日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=aex﹣2x﹣2a,且a∈[1,2],設(shè)函數(shù)f(x)在區(qū)間[0,ln2]上的最小值為m,則m的取值范圍是(  )
          A.[﹣2,﹣2ln2]
          B.[﹣2,﹣ ]
          C.[﹣2ln2,﹣1]
          D.[﹣1,﹣ ]

          【答案】A
          【解析】解:構(gòu)造函數(shù)g(a)=(ex﹣2)a﹣2x是關(guān)于a的一次函數(shù),

          ∵x∈[0,ln2],∴ex﹣2<0,即y=g(a)是減函數(shù),

          ∵a∈[1,2],∴f(x)min=2(ex﹣2)﹣2x,設(shè)M(x)=2(ex﹣2)﹣2x,

          則M′(x)=2ex﹣2,∵x∈[0,ln2],

          ∴M′(x)≥0,則M(x)在[0,ln2]上遞增,

          ∴M(x)min=M(0)=2,M(x)max=M(ln2)=﹣2ln2,

          m的取值范圍是[﹣2,﹣2ln2],

          故選:A.

          構(gòu)造函數(shù)g(a),由于x的范圍可得出g(a)為減函數(shù),根據(jù)a的范圍,求出f(x)的最小值,設(shè)M(x)為f(x)的最大值,求出M(x)的導(dǎo)數(shù),根據(jù)單調(diào)性求出m的范圍.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若Sn為等差數(shù)列{an}的前n項(xiàng)和,且a1=1,S10=55.記bn=[lnan],其中[x]表示不超過(guò)x的最大整數(shù),如[0.9]=0,[lg99]=1.則數(shù)列{bn}的前2017項(xiàng)和為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】圖中,小方格是邊長(zhǎng)為1的正方形,圖中粗線(xiàn)畫(huà)出的是某幾何體的三視圖,且該幾何體的頂點(diǎn)都在同一球面上,則該幾何體的外接球的表面積為( 。

          A.32π
          B.48π
          C.50π
          D.64π

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xoy中,曲線(xiàn)C1是以C1(3,1)為圓心, 為半徑的圓.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)C2:ρsinθ﹣ρcosθ=1.
          (1)求曲線(xiàn)C1的參數(shù)方程與直線(xiàn)C2的直角坐標(biāo)方程;
          (2)直線(xiàn)C2與曲線(xiàn)C1相交于A(yíng),B兩點(diǎn),求△ABC1的周長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】橢圓 的左、右焦點(diǎn)分別為F1(﹣c,0)、F2(c,0),過(guò)橢圓中心的弦PQ滿(mǎn)足|PQ|=2,∠PF2Q=90°,且△PF2Q的面積為1.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)直線(xiàn)l不經(jīng)過(guò)點(diǎn)A(0,1),且與橢圓交于M,N兩點(diǎn),若以MN為直徑的圓經(jīng)過(guò)點(diǎn)A,求證:直線(xiàn)l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱(chēng)之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱(chēng)之為鱉臑.
          如圖,在陽(yáng)馬P﹣ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,E為PC中點(diǎn),點(diǎn)F在PB上,且PB⊥平面DEF,連接BD,BE.

          (Ⅰ)證明:DE⊥平面PBC;
          (Ⅱ)試判斷四面體DBEF是否為鱉臑,若是,寫(xiě)出其每個(gè)面的直角(只需寫(xiě)出結(jié)論);若不是,說(shuō)明理由;
          (Ⅲ)已知AD=2, ,求二面角F﹣AD﹣B的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an}滿(mǎn)足a1+2a2+…+nan=(n﹣1)2n+1+2,n∈N*
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)若bn= ,Tn=b1+b2+…+bn , 求證:對(duì)任意的n∈N* , Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù) ,若對(duì)任意的x∈R,f(x)>x恒成立,則實(shí)數(shù)a的取值范圍是( 。
          A.(﹣2,e)
          B.(﹣∞,e)
          C.(1,+∞)
          D.(﹣∞,1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級(jí)如表:

          質(zhì)量指標(biāo)值m

          m<185

          185≤m<205

          M≥205

          等級(jí)

          三等品

          二等品

          一等品

          從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:

          (1)根據(jù)以上抽樣調(diào)查的數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)這種產(chǎn)品符合“一、二等品至少要占到全部產(chǎn)品的92%的規(guī)定”?
          (2)在樣本中,按產(chǎn)品等級(jí)用分層抽樣的方法抽取8件,再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
          (3)該企業(yè)為提高產(chǎn)品的質(zhì)量,開(kāi)展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值X近似滿(mǎn)足X~N(218,140),則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案