日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)F1,F(xiàn)2分別為雙曲線的左右焦點(diǎn),過(guò)F1引圓x2+y2=9的切線F1P交雙曲線的右支于點(diǎn)P,T為切點(diǎn),M為線段F1P的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|-|MT|等于( )
          A.4
          B.3
          C.2
          D.1
          【答案】分析:由雙曲線方程,算出c==5,根據(jù)三角形中位線定理和圓的切線的性質(zhì),并結(jié)合雙曲線的定義可得|MO|-|MT|=4-a=1,得到本題答案.
          解答:解:∵M(jìn)O是△PF1F2的中位線,
          ∴|MO|=|PF2|,|MT|=|PF1|-|F1T|,
          根據(jù)雙曲線的方程得:
          a=3,b=4,c==5,∴|OF1|=5,
          ∵PF1是圓x2+y2=9的切線,|OT|=3,
          ∴Rt△OTF1中,|FT|==4,
          ∴|MO|-|MT|=|=|PF2|-(|PF1|-|F1T|)=|F1T|-(|PF1|-|PF2|)=4-a=1
          故選:D
          點(diǎn)評(píng):本題給出雙曲線與圓的方程,求|MO|-|MT|的值,著重考查了雙曲線的簡(jiǎn)單性質(zhì)、三角形中位線定理和直線與圓的位置關(guān)系等知識(shí),屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)F1,F(xiàn)2分別為雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          的左、右焦點(diǎn),以線段F1F2為直徑的圓交雙曲線左支于A,B兩點(diǎn),且∠AF1B=120°,若雙曲線的離心率介于整數(shù)k與k+1之間,則k=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•石家莊一模)設(shè)F1,F(xiàn)2分別為雙曲線
          x2
          a2
          -
          y2
          b2
          = 1
          的左、右焦點(diǎn),點(diǎn)P在雙曲線的右支上,且|PF2|=|1FF2|,F(xiàn)2到直線PF1的距離等于雙曲線的實(shí)軸長(zhǎng),則該雙曲線的離心率為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知A、B為橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          和雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          的公共頂點(diǎn),P、Q分別為雙曲線和橢圓上不同于A、B的動(dòng)點(diǎn),且
          OP
          OQ
          (λ∈R,λ>1)
          .設(shè)AP、BP、AQ、BQ的斜率分別為k1、k2、k3、k4
          (1)求證:k1k2=
          b2
          a2
          ;
          (2)求k1+k2+k3+k4的值;
          (3)設(shè)F1、F2分別為雙曲線和橢圓的右焦點(diǎn),若PF1∥QF2,求k12+k22+k32+k42的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•重慶一模)設(shè)F1、F2分別為雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)的左、右焦點(diǎn).若在雙曲線右支上存在點(diǎn)P,滿足|PF2|=|F1F2|,且點(diǎn)P的橫坐標(biāo)為
          5
          4
          c(c為半焦距),則該雙曲線的離心率為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)F1、F2分別為雙曲線C:
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)的左、右焦點(diǎn),A為雙曲線的左頂點(diǎn),以F1F2為直徑的圓交雙曲線某條漸過(guò)線于M,N兩點(diǎn),且滿足∠MAN=120°,則該雙曲線的離心率為(  )

          查看答案和解析>>

          同步練習(xí)冊(cè)答案