日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)f(x)=ax2+bx+c,且關(guān)于x的不等式f(x-1)≥0的解集為[0,1],則關(guān)于x的不等式f(x+2)≤0的解集為
          (-∞,-3]∪[-2,+∞)
          (-∞,-3]∪[-2,+∞)
          分析:利用一元二次不等式的解集與相應(yīng)的一元二次方程的實(shí)數(shù)根之間的關(guān)系即可得出.
          解答:解:∵關(guān)于x的不等式f(x-1)≥0的解集為[0,1],∴0,1是方程a(x-1)2+b(x-1)+c=0(a<0)的實(shí)數(shù)根,化為ax2+(b-2a)x+a-b+c=0.
          0+1=-
          b-2a
          a
          0×1=
          a-b+c
          a
          ,得到c=0,a=b<0.
          ∴f(x)=ax2+ax.
          ∴關(guān)于x的不等式f(x+2)≤0化為a(x+2)2+a(x+2)≤0,
          ∵a<0,∴化為(x+2)(x+3)≥0,
          解得x≥-2或x≤-3.
          ∴關(guān)于x的不等式f(x+2)≤0的解集為(-∞-3]∪[-2+∞).
          故答案為(-∞-3]∪[-2+∞).
          點(diǎn)評:熟練掌握一元二次不等式的解集與相應(yīng)的一元二次方程的實(shí)數(shù)根之間的關(guān)系是解題的關(guān)系.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          13、設(shè)f(x)=ax2+bx+c(a≠0),對于任意-1≤x≤1,有f(x)|≤1;求證|f(2)|≤7.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于函數(shù)f(x),其定義域為D,若任取x1、x2∈D,且x1≠x2,若f(
          x1+x2
          2
          )>
          1
          2
          [f(x1)+f(x2)],則稱f(x)為定義域上的凸函數(shù).
          (1)設(shè)f(x)=ax2(a>0),試判斷f(x)是否為其定義域上的凸函數(shù),并說明原因;
          (2)若函數(shù)f(x)=㏒ax(a>0,且a≠1)為其定義域上的凸函數(shù),試求出實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)=ax2+x-a,g(x)=2ax+5-3a
          (1)若f(x)在x∈[0,1]上的最大值是
          54
          ,求a的值;
          (2)若對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范圍;
          (3)若f(x)=g(x)在x∈[0,1]上有解,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于給定正數(shù)k,定fk(x)=
          f(x)   (f(x)≤k)
          k    (f(x)>k)
          ,設(shè)f(x)=ax2-2ax-a2+5a+2,對任意x∈R和任意a∈(-∞,0)恒有fk(x)=
          f(x)
          ,則( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•閔行區(qū)二模)設(shè)f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,則f(2)的最大值為
          14
          14

          查看答案和解析>>

          同步練習(xí)冊答案