如圖,已知曲線,曲線
,P是平面上一點,若存在過點P的直線與
都有公共點,則稱P為“C1—C2型點”.
(1)在正確證明的左焦點是“C1—C2型點”時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設(shè)直線與
有公共點,求證
,進而證明原點不是“C1—C2型點”;
(3)求證:圓內(nèi)的點都不是“C1—C2型點”.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的右焦點為
,上頂點為B,離心率為
,圓
與
軸交于
兩點
(Ⅰ)求的值;
(Ⅱ)若,過點
與圓
相切的直線
與
的另一交點為
,求
的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
年
月
日
時
分
秒“嫦娥二號”探月衛(wèi)星由長征三號丙運載火箭送入近地點高度約
公里、遠(yuǎn)地點高度約
萬公里的直接奔月橢圓(地球球心
為一個焦點)軌道Ⅰ飛行。當(dāng)衛(wèi)星到達(dá)月球附近的特定位置時,實施近月制動及軌道調(diào)整,衛(wèi)星變軌進入遠(yuǎn)月面
公里、近月面
公里(月球球心
為一個焦點)的橢圓軌道Ⅱ繞月飛行,之后衛(wèi)星再次擇機變軌進入以
為圓心、距月面
公里的圓形軌道Ⅲ繞月飛行,并開展相關(guān)技術(shù)試驗和科學(xué)探測。已知地球半徑約為
公里,月球半徑約為
公里。
(Ⅰ)比較橢圓軌道Ⅰ與橢圓軌道Ⅱ的離心率的大;
(Ⅱ)以為右焦點,求橢圓軌道Ⅱ的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示:已知過拋物線的焦點F的直線
與拋物線相交于A,B兩點。
(1)求證:以AF為直徑的圓與x軸相切;
(2)設(shè)拋物線在A,B兩點處的切線的交點為M,若點M的橫坐標(biāo)為2,求△ABM的外接圓方程;
(3)設(shè)過拋物線焦點F的直線
與橢圓
的交點為C、D,是否存在直線
使得
,若存在,求出直線
的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的焦點為F2,點F1與F2關(guān)于坐標(biāo)原點對稱,直線m垂直于x軸,垂足為T,與拋物線交于不同的兩點P、Q且
.
(1)求點T的橫坐標(biāo);
(2)若以F1,F2為焦點的橢圓C過點.
①求橢圓C的標(biāo)準(zhǔn)方程;
②過點F2作直線l與橢圓C交于A,B兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知直線與拋物線
相切于點
)且與
軸交于點
為坐標(biāo)原點,定點B的坐標(biāo)為
.
(1)若動點滿足
|
=
,求點
的軌跡
.
(2)若過點的直線
(斜率不等于零)與(1)中的軌跡
交于不同的兩點
,試求
與
面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點在坐標(biāo)原點,焦點在軸上,且過點
.
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線
交拋物線于不同的兩點
若拋物線上一點
滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓E:的離心率為
,右焦點為F,且橢圓E上的點到點F距離的最小值為2.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的左、右頂點分別為A,B,過點A的直線l與橢圓E及直線x=8分別相交于點M,N.
(。┊(dāng)過A,F(xiàn),N三點的圓半徑最小時,求這個圓的方程;
(ⅱ)若,求△ABM的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com