日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若直線y=x-m與曲線數(shù)學(xué)公式有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是________.

          (-,-1)
          分析:有兩個(gè)表示的曲線為圓心在原點(diǎn),半徑是1的圓在x軸以及x軸上方的部分,把斜率是1的直線平行移動(dòng),即可求得結(jié)論
          解答:解:∵表示的曲線為圓心在原點(diǎn),半徑是1的圓在x軸以及x軸上方的部分.
          作出曲線的圖象,在同一坐標(biāo)系中,再作出直線y=x-m,平移過(guò)程中,直線先與圓相切,再與圓有兩個(gè)交點(diǎn),
          直線與曲線相切時(shí),可得,=1
          ∴m=-
          當(dāng)直線y=x-m經(jīng)過(guò)點(diǎn)(-1,0)時(shí),m=-1,直線y=x+1,而該直線也經(jīng)過(guò)(0,1),即直線y=x+1與半圓有2個(gè)交點(diǎn)
          故答案為:(-,-1)
          點(diǎn)評(píng):本題考查直線與曲線的交點(diǎn)問(wèn)題,在同一坐標(biāo)系中,分別作出函數(shù)的圖象,借助于數(shù)形結(jié)合是求解的關(guān)鍵
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知圖形OAPBCD是由不等式組
          0≤x≤e2
          0≤y≤e
          y≥lnx
          ,圍成的圖形,其中曲線段APB的方程為y=lnx(1≤x≤e2),P為曲線上的任一點(diǎn).
          (1)證明:直線OC與曲線段相切;
          (2)若過(guò)P點(diǎn)作曲線的切線交圖形的邊界于M,N,求圖形被切線所截得的左上部分的面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:天驕之路中學(xué)系列 讀想用 高二數(shù)學(xué)(上) 題型:044

          如圖所示,直線l1l2相交于點(diǎn)M,且l1l2,點(diǎn)Nl1.以A、B為端點(diǎn)的曲線段C上的任意一點(diǎn)到l2的距離與到點(diǎn)N的距離相等.若△AMN為銳角三角形,|AM|=,|AN|=3,且|BN|=6,分別以l1l2為x軸和y軸,建立如圖坐標(biāo)系,求曲線C的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過(guò)坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A (0,)為圓心,1為半徑的圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于y = x對(duì)稱(chēng).

              (1)求雙曲線C的方程;

              (2)若Q是雙曲線線C上的任一點(diǎn),F1,F2為雙曲線C的左、右兩個(gè)焦點(diǎn),從F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程;

              (3)設(shè)直線y = mx + 1與雙曲線C的左支交于A、B兩點(diǎn),另一直線l經(jīng)過(guò)M (–2,0)及AB的中點(diǎn),求直線ly軸上的截距b的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案