日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),則關(guān)于的方程)的解的個數(shù)可能為               (寫出所有可能的結(jié)果).

           

          【答案】

          4、5、6                  

          【解析】

          試題分析:易知的取值范圍為,設(shè),則時,為雙鉤函數(shù)的一支,最小值為2,在t=1時取到;當,f(t)的取值范圍為,并且是單調(diào)遞增。分別判斷各種情況:,則只有當t>0時有根,此時t有兩個解,而為二次函數(shù),因此x有四個根;當a>3時,同上可知,只有t>0是有根,x有四個解;當時,此時t>0時有兩個解,t<0時有一個解,因此x有六個根;當時,同上,此時在t>0時有兩個解,而t<0時有一個解,但在t<0處x有唯一解,因此x有五個根。綜上,該方程根的個數(shù)可能為4、5、6個,其余個數(shù)均不可能。

          考點:雙鉤函數(shù);基本不等式;二次函數(shù)的性質(zhì)。函數(shù)圖像的綜合應(yīng)用。

          點評:本題考查函數(shù)的單調(diào)性,考查函數(shù)與方程的聯(lián)系,做本題的關(guān)鍵是畫出圖形,根據(jù)圖形分析出解得各種情況。有一定的難度.

           

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)給出下列四個命題:
          ①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則?=
          π
          6
          5
          6
          π
          ;
          ②已知O、A、B、C是平面內(nèi)不同的四點,且
          OA
          OB
          OC
          ,則α+β=1是A、B、C三點共線的充要條件;
          ③若數(shù)列an恒滿足
          a
          2
          n+1
          a
          2
          n
          =p
          (p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
          ④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達式為n=
          1
          12
          (4k+8)

          (k∈N*).
          其中正確命題的序號是
           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010-2011學年安徽省六安一中高三(下)第七次月考數(shù)學試卷(理科)(解析版) 題型:填空題

          給出下列四個命題:
          ①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則;
          ②已知O、A、B、C是平面內(nèi)不同的四點,且,則α+β=1是A、B、C三點共線的充要條件;
          ③若數(shù)列an恒滿足(p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
          ④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達式為
          (k∈N*).
          其中正確命題的序號是   

          查看答案和解析>>

          同步練習冊答案