日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,曲線C1是以原點(diǎn)O為中心,F(xiàn)1,F(xiàn)2為焦點(diǎn)的橢圓的一部分,曲線C2是以O(shè)為頂點(diǎn),F(xiàn)2(1,0)為焦點(diǎn)的拋物線的一部分,是曲線C1和C2的交點(diǎn).
          (I)求曲線C1和C2所在的橢圓和拋物線的方程;
          (II)過(guò)F2作一條與x軸不垂直的直線,與曲線C2交于C,D兩點(diǎn),求△CDF1面積的取值范圍.

          【答案】分析:(I)先設(shè)出拋物線以及橢圓方程,根據(jù)F2(1,0)為焦點(diǎn),求出p=1,得到拋物線方程;再根據(jù)()在橢圓上,即可求出橢圓方程;
          (II)設(shè)出直線方程x=my+1,并根據(jù)條件求出m的取值范圍;再聯(lián)立直線與拋物線方程,根據(jù)韋達(dá)定理以及|y1-y2|=求出三角形面積的表達(dá)式,最后結(jié)合m的取值范圍即可求出△CDF1面積的取值范圍.
          解答:解:(I)設(shè)拋物線方程為:y2=2px,由F2(1,0)為焦點(diǎn),所以p=1.∴y2=4x
          設(shè)橢圓方程為;代入(,),解得a2=9,
          所以橢圓方程為:=1.
          (II)設(shè)直線方程為:x=my+1,則m∈(-,0)∪(0,).
          得y2-4my-4=0.
          設(shè)C(x1,y1),D(x2,y2
          則y1+y2=4m,y1y2=-4.
          所以=×2×|y1-y2|==4,因?yàn)閙2∈(0,).
          ∴S∈(4,).
          點(diǎn)評(píng):本題主要考查直線與圓錐曲線的位置關(guān)系.解決第二問(wèn)的關(guān)鍵在于把△CDF1面積轉(zhuǎn)化為上下兩個(gè)三角形面積的和,進(jìn)而轉(zhuǎn)化為求|y1-y2|的問(wèn)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,曲線C1是以原點(diǎn)O為中心、F1,F(xiàn)2為焦點(diǎn)的橢圓的一部分,曲線C2是以O(shè)為頂點(diǎn)、F2為焦點(diǎn)的拋物線的一部分,A是曲線C1和C2的交點(diǎn)且∠AF2F1為鈍角,若|AF1|=
          7
          2
          ,|AF2|=
          5
          2
          ,
          (1)求曲線C1和C2的方程;
          (2)過(guò)F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點(diǎn),若G為CD中點(diǎn)、H為BE中點(diǎn),問(wèn)
          |BE|•|GF2|
          |CD|•|HF2|
          是否為定值?若是求出定值;若不是說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,精英家教網(wǎng)曲線C1是以原點(diǎn)O為中心,F(xiàn)1,F(xiàn)2為焦點(diǎn)的橢圓的一部分,曲線C2是以O(shè)為頂點(diǎn),F(xiàn)2(1,0)為焦點(diǎn)的拋物線的一部分,A(
          3
          2
          6
          )
          是曲線C1和C2的交點(diǎn).
          (I)求曲線C1和C2所在的橢圓和拋物線的方程;
          (II)過(guò)F2作一條與x軸不垂直的直線,與曲線C2交于C,D兩點(diǎn),求△CDF1面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,曲線C1是以原點(diǎn)O為中心、F1,F(xiàn)2為焦點(diǎn)的橢圓的一部分,曲線C2是以O(shè)為頂點(diǎn)、F2為焦點(diǎn)的拋物線的一部分,A是曲線C1和C2的交點(diǎn),曲線C1的離心率為
          1
          3
          ,若|AF1|=
          7
          2
          ,|AF2|=
          5
          2

          (Ⅰ)求曲線C1和C2所在的橢圓和拋物線方程;
          (Ⅱ)過(guò)F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點(diǎn),若G為CD中點(diǎn)、H為BE中點(diǎn),問(wèn)
          |BE|•|GF2|
          |CD|•|HF2|
          是否為定值?若是,求出定值;若不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•孝感模擬)如圖,曲線C1是以原點(diǎn)O為中心,F(xiàn)1,F(xiàn)2為焦點(diǎn)的橢圓的一部分.曲線C2是以O(shè)為頂點(diǎn),F(xiàn)2為焦點(diǎn)的拋物線的一部分,A是曲線C1和C2的交點(diǎn)且∠AF2F1為鈍角,若|AF1|=
          7
          2
          ,|AF2|=
          5
          2

          (I)求曲線C1和C2的方程;
          (II)設(shè)點(diǎn)C是C2上一點(diǎn),若|CF1|=
          2
          |CF2|,求△CF1F2的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,曲線C1是以原點(diǎn)O為中心,F(xiàn)1、F2為焦點(diǎn)的橢圓的一部分,曲線C2是以原點(diǎn)O為頂點(diǎn),F(xiàn)2為焦點(diǎn)的拋物線的一部分,A(
          3
          2
          ,
          6
          )
          是曲線C1和C2的交點(diǎn).
          (Ⅰ)求曲線C1和C2所在的橢圓和拋物線的方程;
          (Ⅱ)過(guò)F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點(diǎn),若G為CD中點(diǎn),H為BE中點(diǎn),問(wèn)
          |BE|•|GF2|
          |CD|•|HF2|
          是否為定值,若是,求出定值;若不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案