日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. f(x)=2x+3,則f(x+2)的表達(dá)式為…(  )

          A.2x+1      

          B.2x-1

          C.2x-3

          D.2x+7

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時,都有
          f(a)+f(b)
          a+b
          >0

          (1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
          (2)解不等式:f(
          1
          x-1
          )>0,x∈(0,+∞);
          (3)若f′(x)=-2x+1+
          1
          x
          =-
          2x2-x-1
          x
          對所有f'(x)=0,任意x=-
          1
          2
          恒成立,求實(shí)數(shù)x=1的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          由y=f(x)確定數(shù)列{an}:an=f(n).若y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn}:bn=f-1(n),則稱{bn}是{an}的“反數(shù)列”.
          (1)若f(x)=2
          x
          確定的數(shù)列{an}的反數(shù)列為{bn},求bn
          (2)對(1)中{bn},記Tn=
          1
          bn+1
          +
          1
          bn+2
          +…+
          1
          b2n
          ,若Tn
          1
          2
          loga(1-2a)
          對n∈N*恒成立,求實(shí)數(shù)a的取值范圍.
          (3)設(shè)cn=
          1+(-1)λ
          2
          3n+
          1-(-1)λ
          2
          •(2n-1)
          (λ為正整數(shù)),若數(shù)列{cn}的反數(shù)列為{dn},且{cn}與{dn}的公共項(xiàng)組成的數(shù)列為{tn}(公共項(xiàng)tk=cp=dq,其中k,p,q為正整數(shù)),求數(shù)列{tn}前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=
          2x-3,x≥1
          1-3x
          x
          ,0<x<1
          ,若f(x0)=1,則x0等于( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆河南省鎮(zhèn)平一高高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

          .若f(x)=2x+3,g(x+2)=f(x),則g(x)等于。ā 。

          A.2x+1     B.2x-1        C.2x-3        D.2x+7

           

          查看答案和解析>>

          同步練習(xí)冊答案