某企業(yè)有兩個(gè)生產(chǎn)車間,分別位于邊長(zhǎng)是的等邊三角形
的頂點(diǎn)
處(如圖),現(xiàn)要在邊
上的
點(diǎn)建一倉(cāng)庫(kù),某工人每天用叉車將生產(chǎn)原料從倉(cāng)庫(kù)運(yùn)往車間,同時(shí)將成品運(yùn)回倉(cāng)庫(kù).已知叉車每天要往返
車間5次,往返
車間20次,設(shè)叉車每天往返的總路程為
.(注:往返一次即先從倉(cāng)庫(kù)到車間再由車間返回倉(cāng)庫(kù))
(Ⅰ)按下列要求確定函數(shù)關(guān)系式:
①設(shè)長(zhǎng)為
,將
表示成
的函數(shù)關(guān)系式;
②設(shè),將
表示成
的函數(shù)關(guān)系式.
(Ⅱ)請(qǐng)你選用(Ⅰ)中一個(gè)合適的函數(shù)關(guān)系式,求總路程 的最小值,并指出點(diǎn)
的位置.
(Ⅰ)①;②
;
(Ⅱ)當(dāng)時(shí),總路程
最小,最小值為
.
解析試題分析:(Ⅰ)①是借助余弦定理將用
表示出來(lái),然后根據(jù)
的實(shí)際意義利用
表示出來(lái),但同時(shí)也應(yīng)注意自變量
的取值范圍;②借助正弦定理將
、
的長(zhǎng)度用
表示出來(lái),然后將
利用以
為自變量的函數(shù)表示出來(lái),并注意自變量
的取值范圍;(Ⅱ)選擇②中的函數(shù)解析式,利用導(dǎo)數(shù)求極值,從而確定
的最小值.
試題解析: (Ⅰ)①在中,
,
,
,
由余弦定理,,
所以. 3分
②在中,
,
,
,
.
由正弦定理,,
得,
,
則. 6分
(Ⅱ)選用(Ⅰ)中的②的函數(shù)關(guān)系式,,
,
由得,
,記
,
則當(dāng)時(shí),
,
;當(dāng)
時(shí),
,
;
所以當(dāng),時(shí),總路程
最小值為
,
此時(shí),
,
答:當(dāng)時(shí),總路程
最小,最小值為
. 13分
考點(diǎn):正弦定理、余弦定理、函數(shù)的極值與最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知冪函數(shù)為偶函數(shù),且在區(qū)間
上是單調(diào)增函數(shù)
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),其中
.若函數(shù)
僅在
處有極值,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的定義域 ;
(2)若函數(shù)的最小值為
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某商場(chǎng)在店慶一周年開(kāi)展“購(gòu)物折上折活動(dòng)”:商場(chǎng)內(nèi)所有商品按標(biāo)價(jià)的八折出售,折后價(jià)格每滿500元再減100元.如某商品標(biāo)價(jià)為1500元,則購(gòu)買該商品的實(shí)際付款額為1500×0.8-200=1000(元).設(shè)購(gòu)買某商品得到的實(shí)際折扣率.設(shè)某商品標(biāo)價(jià)為
元,購(gòu)買該商品得到的實(shí)際折扣率為
.
(Ⅰ)寫出當(dāng)時(shí),
關(guān)于
的函數(shù)解析式,并求出購(gòu)買標(biāo)價(jià)為1000元商品得到的實(shí)際折扣率;
(Ⅱ)對(duì)于標(biāo)價(jià)在[2500,3500]的商品,顧客購(gòu)買標(biāo)價(jià)為多少元的商品,可得到的實(shí)際折扣率低于?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
有兩個(gè)投資項(xiàng)目、
,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A項(xiàng)目的利潤(rùn)與投資成正比,其關(guān)系如圖甲,B項(xiàng)目的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖乙.(注:利潤(rùn)與投資單位:萬(wàn)元)
(1)分別將A、B兩個(gè)投資項(xiàng)目的利潤(rùn)表示為投資x(萬(wàn)元)的函數(shù)關(guān)系式;
(2)現(xiàn)將萬(wàn)元投資A項(xiàng)目, 10-x萬(wàn)元投資B項(xiàng)目.h(x)表示投資A項(xiàng)目所得利潤(rùn)與投資B項(xiàng)目所得利潤(rùn)之和.求h(x)的最大值,并指出x為何值時(shí),h(x)取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),
.
⑴ 求不等式的解集;
⑵ 如果關(guān)于的不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其圖象為曲線
,點(diǎn)
為曲線
上的動(dòng)點(diǎn),在點(diǎn)
處作曲線
的切線
與曲線
交于另一點(diǎn)
,在點(diǎn)
處作曲線
的切線
.
(Ⅰ)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)點(diǎn)時(shí),
的方程為
,求實(shí)數(shù)
和
的值;
(Ⅲ)設(shè)切線、
的斜率分別為
、
,試問(wèn):是否存在常數(shù)
,使得
?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/77/3/116xw2.png" style="vertical-align:middle;" />,
(1)求;
(2)當(dāng)時(shí),求函數(shù)
的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),證明:對(duì)任意
,
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com