日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】點(diǎn)與定點(diǎn)的距離和它到直線的距離的比是常數(shù),設(shè)點(diǎn)的軌跡為曲線.

          1)求曲線的方程;

          2)過點(diǎn)的直線與曲線交于兩點(diǎn),設(shè)的中點(diǎn)為,兩點(diǎn)為曲線上關(guān)于原點(diǎn)對稱的兩點(diǎn),且),求四邊形面積的取值范圍.

          【答案】(1);(2).

          【解析】

          1)設(shè)出點(diǎn)的坐標(biāo),根據(jù)題意,列出方程,整理化簡即可求得動(dòng)點(diǎn)的軌跡方程;

          2)設(shè)出直線的方程,利用弦長公式求得,再利用,建立直線之間的聯(lián)系,再利用點(diǎn)到直線的距離,以及面積公式,將四邊形面積表示為函數(shù)形式,求該函數(shù)的值域即可.

          1)設(shè)動(dòng)點(diǎn),則到直線的距離,

          由題可知:,即可得

          兩邊平方整理可得:

          故曲線的方程為:.

          (2)因?yàn)?/span>,故兩點(diǎn)不可能重合,

          則直線的斜率不可能為0,

          故可設(shè)直線方程為

          聯(lián)立橢圓方程,

          可得,

          設(shè)兩點(diǎn)坐標(biāo)分別為,

          則可得,

          故可得

          因?yàn)?/span>,故可得四點(diǎn)共線,

          故可得.

          不妨設(shè)直線方程為,

          聯(lián)立直線與橢圓方程

          可得,

          設(shè),

          ,即

          ,即

          則點(diǎn)到直線的距離為:

          代入上式即可得:

          ,,

          又根據(jù)弦長公式可得:

          故四邊形面積

          ,

          因?yàn)?/span>,則,

          .

          故四邊形面積的取值范圍為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,扇形AOB是一個(gè)觀光區(qū)的平面示意圖,其中圓心角∠AOB為,半徑OA為1 km.為了便于游客觀光休閑,擬在觀光區(qū)內(nèi)鋪設(shè)一條從入口A到出口B的觀光道路,道路由弧AC、線段CD及線段DB組成,其中D在線段OB上,且CD∥AO.設(shè)∠AOC=θ.

          (1)用θ表示CD的長度,并寫出θ的取值范圍;

          (2)當(dāng)θ為何值時(shí),觀光道路最長?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)若函數(shù)在定義域上是單調(diào)遞增函數(shù),求的取值范圍;

          2)若恒成立,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】天文學(xué)中為了衡量星星的明暗程度,古希臘天文學(xué)家喜帕恰斯(,又名依巴谷)在公元前二世紀(jì)首先提出了星等這個(gè)概念.星等的數(shù)值越小,星星就越亮;星等的數(shù)值越大,它的光就越暗.到了1850年,由于光度計(jì)在天體光度測量中的應(yīng)用,英國天文學(xué)家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足.其中星等為的星的亮度為.已知心宿二的星等是1.00.“天津四的星等是1.25.“心宿二的亮度是天津四倍,則與最接近的是(當(dāng)較小時(shí), )

          A.1.24B.1.25C.1.26D.1.27

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】造紙術(shù)是我國古代四大發(fā)明之一.紙張的規(guī)格是指紙張制成后,經(jīng)過修整切邊,裁成一定的尺寸.現(xiàn)在我國采用國際標(biāo)準(zhǔn),規(guī)定以、、、、等標(biāo)記來表示紙張的幅面規(guī)格.復(fù)印紙幅面規(guī)格只采用系列和系列,其中系列的幅面規(guī)格為:①規(guī)格的紙張的幅寬(以表示)和長度(以表示)的比例關(guān)系為;②將紙張沿長度方向?qū)﹂_成兩等分,便成為規(guī)格.紙張沿長度方向?qū)﹂_成兩等分,便成為規(guī)格,,如此對開至規(guī)格.現(xiàn)有、、紙各一張.紙的面積為,則這9張紙的面積之和等于______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中為常數(shù),為自然對數(shù)的底數(shù).

          (Ⅰ)若在區(qū)間,上的最小值為1,求的值;

          (Ⅱ)若“,使”為假命題,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是兩條異面直線,直線都垂直,則下列說法正確的是( )

          A. 平面,則

          B. 平面,則,

          C. 存在平面,使得,,

          D. 存在平面,使得,,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱柱中,平面,四邊形為平行四邊形,,

          1)若,求證:平面;

          2)若,,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】,,,,三個(gè)條件中任選一個(gè)補(bǔ)充在下面問題中,并加以解答.

          已知的內(nèi)角A,B,C的對邊分別為ab,c,若______,求的面積S.

          查看答案和解析>>

          同步練習(xí)冊答案