已知橢圓:
.
(1)橢圓的短軸端點(diǎn)分別為
(如圖),直線
分別與橢圓
交于
兩點(diǎn),其中點(diǎn)
滿足
,且
.
①證明直線與
軸交點(diǎn)的位置與
無(wú)關(guān);
②若∆面積是∆
面積的5倍,求
的值;
(2)若圓:
.
是過(guò)點(diǎn)
的兩條互相垂直的直線,其中
交圓
于
、
兩點(diǎn),
交橢圓
于另一點(diǎn)
.求
面積取最大值時(shí)直線
的方程.
(1)①交點(diǎn)為;②
;(2)
.
【解析】
試題分析:(1)①本題方法很容易想到,主要考查計(jì)算推理能力,寫出直線的方程,然后把直線
方程與橢圓方程聯(lián)立,求得
點(diǎn)坐標(biāo),同理求得
點(diǎn)坐標(biāo),從而得到直線
的方程,令
,求出
,與
無(wú)關(guān);②兩個(gè)三角形∆
與∆
有一對(duì)對(duì)頂角
和
,故面積用公式
,
表示,那么面積比就為
,即
,這個(gè)比例式可以轉(zhuǎn)化為點(diǎn)的橫坐標(biāo)之間(或縱坐標(biāo))的關(guān)系式,從而 求出
;(2)仍采取基本方法,設(shè)
的方程為
,則
的方程為
,直線
與圓
相交于
,弦
的長(zhǎng)可用直角三角形法求,(弦心距,半徑,半個(gè)弦長(zhǎng)構(gòu)成一個(gè)直角三角形),
的高為
是直線
與橢圓相交的弦長(zhǎng),用公式
來(lái)求,再借助于基本不等式求出最大值及相應(yīng)的
值,也即得出
的方程.
試題解析:(1)①因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030303222540622612/SYS201403030323364843213145_DA.files/image034.png">,M (m,),且
,
直線AM的斜率為k1=
,直線BM斜率為k2=
,
直線AM的方程為y=
,直線BM的方程為y=
,
由得
,
由得
,
;
據(jù)已知,,
直線EF的斜率
直線EF的方程為
,
令x=0,得 EF與y軸交點(diǎn)的位置與m無(wú)關(guān).
②,
,
,
,
,
,
,
整理方程得
,即
,
又有,
,
,
為所求.
(2) 因?yàn)橹本,且都過(guò)點(diǎn)
,所以設(shè)直線
,
直線,
所以圓心到直線
的距離為
,
所以直線被圓
所截的弦
;
由,所以
所以
所以
當(dāng)時(shí)等號(hào)成立,
此時(shí)直線
考點(diǎn):(1)①動(dòng)直線中的定點(diǎn)問(wèn)題;②三角形的面積,線段比與點(diǎn)的坐標(biāo)之間的關(guān)系;(2)直線與圓相交弦長(zhǎng),直線與橢圓相交的弦長(zhǎng),基本不等式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
AP |
PB |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
4 |
y2 |
b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
8 |
y2 |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com