日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓.

          (1)橢圓的短軸端點(diǎn)分別為(如圖),直線分別與橢圓交于兩點(diǎn),其中點(diǎn)滿足,且.

          ①證明直線軸交點(diǎn)的位置與無(wú)關(guān);

          ②若∆面積是∆面積的5倍,求的值;

          (2)若圓:.是過(guò)點(diǎn)的兩條互相垂直的直線,其中交圓、兩點(diǎn),交橢圓于另一點(diǎn).求面積取最大值時(shí)直線的方程.

           

          【答案】

          (1)①交點(diǎn)為;②;(2) .

          【解析】

          試題分析:(1)①本題方法很容易想到,主要考查計(jì)算推理能力,寫出直線的方程,然后把直線方程與橢圓方程聯(lián)立,求得點(diǎn)坐標(biāo),同理求得點(diǎn)坐標(biāo),從而得到直線的方程,令,求出,與無(wú)關(guān);②兩個(gè)三角形∆與∆有一對(duì)對(duì)頂角,故面積用公式,表示,那么面積比就為,即,這個(gè)比例式可以轉(zhuǎn)化為點(diǎn)的橫坐標(biāo)之間(或縱坐標(biāo))的關(guān)系式,從而 求出;(2)仍采取基本方法,設(shè)的方程為,則的方程為,直線與圓相交于,弦的長(zhǎng)可用直角三角形法求,(弦心距,半徑,半個(gè)弦長(zhǎng)構(gòu)成一個(gè)直角三角形),的高為是直線與橢圓相交的弦長(zhǎng),用公式來(lái)求,再借助于基本不等式求出最大值及相應(yīng)的值,也即得出的方程.

          試題解析:(1)①因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030303222540622612/SYS201403030323364843213145_DA.files/image034.png">,M (m,),且,

          直線AM的斜率為k1=,直線BM斜率為k2=,

          直線AM的方程為y= ,直線BM的方程為y=,

          ,

          ,

          ;

          據(jù)已知,,

          直線EF的斜率

          直線EF的方程為  ,

          令x=0,得 EF與y軸交點(diǎn)的位置與m無(wú)關(guān).

          ,,,

          ,,,

           ,

          整理方程得,即

          又有, 為所求.

          (2) 因?yàn)橹本,且都過(guò)點(diǎn),所以設(shè)直線,

          直線,

          所以圓心到直線的距離為,

          所以直線被圓所截的弦;

          ,所以

            所以

          所以

          當(dāng)時(shí)等號(hào)成立,

          此時(shí)直線

          考點(diǎn):(1)①動(dòng)直線中的定點(diǎn)問(wèn)題;②三角形的面積,線段比與點(diǎn)的坐標(biāo)之間的關(guān)系;(2)直線與圓相交弦長(zhǎng),直線與橢圓相交的弦長(zhǎng),基本不等式.

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,點(diǎn)B在橢圓上,且BF⊥x軸,直線AB交y軸于點(diǎn)P.若
          AP
          =2
          PB
          ,則橢圓的離心率是( 。
          A、
          3
          2
          B、
          2
          2
          C、
          1
          3
          D、
          1
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>c>0,a2=b2+c2)
          的左、右焦點(diǎn)分別為F1,F(xiàn)2,若以F2為圓心,b-c為半徑作圓F2,過(guò)橢圓上一點(diǎn)P作此圓的切線,切點(diǎn)為T,且|PT|的最小值不小于
          3
          2
          (a-c)

          (1)求橢圓的離心率e的取值范圍;
          (2)設(shè)橢圓的短半軸長(zhǎng)為1,圓F2與x軸的右交點(diǎn)為Q,過(guò)點(diǎn)Q作斜率為k(k>0)的直線l與橢圓相交于A,B兩點(diǎn),若OA⊥OB,求直線l被圓F2截得的弦長(zhǎng)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓
          x2
          4
          +
          y2
          b
          =1(0<b<4)的右焦點(diǎn)為F,左右頂點(diǎn)分別為C、A,上頂點(diǎn)為B,過(guò)B,C,F(xiàn)作圓P.
          (Ⅰ)當(dāng)b=1時(shí),求圓P的方程;
          (Ⅱ)求證:直線AB與圓P不可能相切.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓
          x2
          8
          +
          y2
          4
          =1上一點(diǎn)P到右焦點(diǎn)的距離是1,則點(diǎn)P到左焦點(diǎn)的距離是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的一個(gè)焦點(diǎn)是圓x2+y2-6x+8=0的圓心,且短軸長(zhǎng)為8,則橢圓的左頂點(diǎn)為( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案