日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知點(diǎn)F(0,1),直線l:y=-1,P為平面上的動(dòng)點(diǎn),過點(diǎn)P作直線l的垂線,垂足為Q,且
          (1)求動(dòng)點(diǎn)P的軌跡C的方程;
          (2)已知圓M過定點(diǎn)D(0,2),圓心M在軌跡C上運(yùn)動(dòng),且圓M與x軸交于A、B兩點(diǎn),設(shè)|DA|=l1,|DB|=l2,求的最大值.
          【答案】分析:(1)先設(shè)出點(diǎn)P的坐標(biāo),代入整理即可得到動(dòng)點(diǎn)P的軌跡C的方程;
          (2)先利用條件設(shè)出圓的方程,并求出A、B兩點(diǎn)的坐標(biāo)以及|DA|=l1,|DB|=l2的表達(dá)式,代入整理后利用基本不等式求最大值即可.
          解答:(1)解:設(shè)P(x,y),則Q(x,-1),
          ,
          ∴(0,y+1)•(-x,2)=(x,y-1)•(x,-2).
          即2(y+1)=x2-2(y-1),即x2=4y,
          所以動(dòng)點(diǎn)P的軌跡C的方程x2=4y.
          (2)解:設(shè)圓M的圓心坐標(biāo)為M(a,b),則a2=4b.①
          圓M的半徑為
          圓M的方程為(x-a)2+(y-b)2=a2+(b-2)2
          令y=0,則(x-a)2+b2=a2+(b-2)2,
          整理得,x2-2ax+4b-4=0.②
          由①、②解得,x=a±2.
          不妨設(shè)A(a-2,0),B(a+2,0),

          =,③
          當(dāng)a≠0時(shí),由③得,
          當(dāng)且僅當(dāng)時(shí),等號(hào)成立.
          當(dāng)a=0時(shí),由③得,
          故當(dāng)時(shí),的最大值為
          點(diǎn)評(píng):本小題主要考查圓、拋物線、基本不等式等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化、函數(shù)與方程的數(shù)學(xué)思想方法,以及推理論證能力和運(yùn)算求解能力
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點(diǎn)F(0,1),直線l:y=-1,P為平面上的動(dòng)點(diǎn),點(diǎn)P到點(diǎn)F的距離等于點(diǎn)P到直線l的距離.
          (1)求動(dòng)點(diǎn)P的軌跡C的方程;
          (2)已知圓M過定點(diǎn)D(0,2),圓心M在軌跡C上運(yùn)動(dòng),且圓M與x軸交于A、B兩點(diǎn),求|AB|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點(diǎn)F(0,1),直線l:y=-1,P為平面上的動(dòng)點(diǎn),過點(diǎn)P作直線l的垂線,垂足為Q,且
          QP
          QF
          =
          FP
          FQ

          (1)求動(dòng)點(diǎn)P的軌跡C的方程;
          (2)已知圓M過定點(diǎn)D(0,2),圓心M在軌跡C上運(yùn)動(dòng),且圓M與x軸交于A、B兩點(diǎn),設(shè)|DA|=l1,|DB|=l2,求
          l1
          l2
          +
          l2
          l1
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知點(diǎn)F(0,1),直線L:y=-2,及圓C:x2+(y-3)2=1.
          (1)若動(dòng)點(diǎn)M到點(diǎn)F的距離比它到直線L的距離小1,求動(dòng)點(diǎn)M的軌跡E的方程;
          (2)過點(diǎn)F的直線g交軌跡E于G(x1,y1)、H(x2,y2)兩點(diǎn),求證:x1x2 為定值;
          (3)過軌跡E上一點(diǎn)P作圓C的切線,切點(diǎn)為A、B,要使四邊形PACB的面積S最小,求點(diǎn)P的坐標(biāo)及S的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•石家莊二模)在平面直角坐標(biāo)系中,已知點(diǎn)F(0,1),直線l:y=-1,P為平面內(nèi)動(dòng)點(diǎn),過點(diǎn)P作直線l的垂線,垂足為Q,且
          QF
          •(
          QP
          +
          FP
          )=0

          (Ⅰ)求動(dòng)點(diǎn)P的軌跡E的方程;
          (Ⅱ)過點(diǎn)M(0,m)(m>0)的直線AB與曲線E交于A、B兩個(gè)不同點(diǎn),設(shè)∠AFB=θ,若對于所有這樣的直線AB,都有θ∈(
          π
          2
          ,π].求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•嘉定區(qū)二模)如圖,已知點(diǎn)F(0,1),直線m:y=-1,P為平面上的動(dòng)點(diǎn),過點(diǎn)P作m的垂線,垂足為點(diǎn)Q,且
          QP
          QF
          =
          FP
          FQ

          (1)求動(dòng)點(diǎn)P的軌跡C的方程;
          (2)(文)過軌跡C的準(zhǔn)線與y軸的交點(diǎn)M作方向向量為
          d
          =(a,1)的直線m′與軌跡C交于不同兩點(diǎn)A、B,問是否存在實(shí)數(shù)a使得FA⊥FB?若存在,求出a的范圍;若不存在,請說明理由;
          (3)(文)在問題(2)中,設(shè)線段AB的垂直平分線與y軸的交點(diǎn)為D(0,y0),求y0的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案