【題目】若函數(shù)f(x)=[x3+3x2+(a+6)x+6﹣a]e﹣x在區(qū)間(2,4)上存在極大值點,則實數(shù)a的取值范圍是( )
A.(﹣∞,﹣32)
B.(﹣∞,﹣27)
C.(﹣32,﹣27)
D.(﹣32,﹣27]
【答案】C
【解析】解:f′(x)=﹣(x﹣2)( +a)e﹣x令h(x)=
+a,h′(x)=
,在(2,3)上單調(diào)遞減,(3,4)上單調(diào)遞增,
函數(shù)f(x)=[x3+3x2+(a+6)x+6﹣a]e﹣x在區(qū)間(2,4)上存在極大值點,則h′(4)=32+a>0,h′(3)=27+a<0,
∴﹣32<a<﹣27
∴實數(shù)a的取值范圍為(﹣32,﹣27).
故選C.
【考點精析】掌握函數(shù)的極值與導數(shù)是解答本題的根本,需要知道求函數(shù)的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值.
科目:高中數(shù)學 來源: 題型:
【題目】
已知公比為整數(shù)的正項等比數(shù)列滿足:
,
.
(1)求數(shù)列的通項公式;
(2)令,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:
.
(1)直線過點
,被圓
截得的弦長為
,求直線
的方程;
(2)直線的的斜率為1,且
被圓
截得弦
,若以
為直徑的圓過原點,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過定點P(1,1),且傾斜角為 ,以坐標原點為極點,x軸的正半軸為極軸的坐標系中,曲線C的極坐標方程為
.
(1)求曲線C的直角坐標方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于不同的兩點A,B,求|AB|及|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構用簡單隨機抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結果如表.
非一線 | 一線 | 總計 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
總計 | 58 | 42 | 100 |
附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
由K2= 算得,K2=
≈9.616參照附表,得到的正確結論是( )
A.在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別有關”
B.在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別無關”
C.有99%以上的把握認為“生育意愿與城市級別有關”
D.有99%以上的把握認為“生育意愿與城市級別無關”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解某工廠開展群眾體育活動的情況,擬采用分層抽樣的方法從A,B,C三個區(qū)中抽取7個工廠進行調(diào)查,已知A,B,C區(qū)中分別有18,27,18個工廠
(Ⅰ)求從A,B,C區(qū)中分別抽取的工廠個數(shù);
(Ⅱ)若從抽取的7個工廠中隨機抽取2個進行調(diào)查結果的對比,求這2個工廠中至少有1個來自A區(qū)的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法錯誤的是( )
A.命題“若 ,則
”的逆否命題為:“若
,則
”
B.“ ”是“
”的充分不必要條件
C.若 且
為假命題,則
、
均為假命題
D.命題 :“
,使得
”,則
:“
,均有
”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確的個數(shù)為( )
①“x∈R都有x2≥0”的否定是“x0∈R使得x02≤0”;
②“x≠3”是“|x|≠3”成立的充分條件;
③命題“若m≤ ,則方程mx2+2x+2=0有實數(shù)根”的否命題為真命題.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的右焦點為
,右頂點為
,已知
,其中
為原點,
為橢圓的離心率.
(1)求橢圓的方程;
(2)設過點的直線
與橢圓交于點
(
不在
軸上),垂直于
的直線與
交于點
,與
軸交于點
,若
,且
,求直線的
斜率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com