日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=
          x2+bx+c(x≤0)
          2(x>0)
          ,其中b>0,c∈R.當且僅當x=-2時,函數(shù)f(x)取得最小值-2.
          (1)求函數(shù)f(x)的表達式;
          (2)若方程f(x)=x+a(a∈R)至少有兩個零點,求實數(shù)a取值的集合.
          分析:(1)由題意,當且僅當x=-2時,函數(shù)f(x)取得最小值-2,即為二次函數(shù)當x=-2時,函數(shù)f(x)取得最小值-2,從而利用二次函數(shù)求最值的方法可求;
          (2)由題意,方程可化為x2+3x+2-a=0,要使方程有兩不等實根,則判別式=9-4(2-a)>0,解不等式可求.
          解答:解:(1)由于二次函數(shù)的對稱軸為x=-
          b
          2
          此時有最小值
          -
          b
          2
          =-2,f(-2)=4-2b+c=-2

          解得b=4,c=2
          所以f(x)=
          x2+4x+2,  x≤0
          2,  x>0
          ,
          (2)由題意,方程可化為x2+3x+2-a=0
          要使方程有兩不等實根,則判別式=9-4(2-a)>0
          解得a>-
          1
          4

          ∴a取值范圍的集合為{a|a>-
          1
          4
          }
          點評:本題的考點是函數(shù)的零點與方程根的關(guān)系,主要考查函數(shù)解析式的求解,考查函數(shù)的零點與方程根的關(guān)系,關(guān)鍵是將問題轉(zhuǎn)化為對應方程根的問題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          當p1,p2,…,pn均為正數(shù)時,稱
          n
          p1+p2+…+pn
          為p1,p2,…,pn的“均倒數(shù)”.已知數(shù)列{an}的各項均為正數(shù),且其前n項的“均倒數(shù)”為
          1
          2n+1

          (1)求數(shù)列{an}的通項公式;
          (2)設(shè)cn=
          an
          2n+1
          (n∈N*),試比較cn+1與cn的大。
          (3)設(shè)函數(shù)f(x)=-x2+4x-
          an
          2n+1
          ,是否存在最大的實數(shù)λ,使當x≤λ時,對于一切正整數(shù)n,都有f(x)≤0恒成立?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=
          x2+bx+c,(x<0)
          -x+3,(x≥0)
          ,且f(-4)=f(0),f(-2)=-1.
          (1)求函數(shù)f(x)的解析式; 
          (2)畫出函數(shù)f(x)的圖象,并指出函數(shù)f(x)的單調(diào)區(qū)間.
          (3)若方程f(x)=k有兩個不等的實數(shù)根,求k的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知△ABC中,角A,B,C所對邊長分別是a,b,c,設(shè)函數(shù)f(x)=x2+bx-
          1
          4
          為偶函數(shù),且f(cos
          B
          2
          )=0

          (1)求角B的大;
          (2)若△ABC的面積為
          3
          4
          ,其外接圓的半徑為
          2
          3
          3
          ,求△ABC的周長.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=
          x2+bx+c,-4≤x<0
          -x+3,0≤x≤4
          ,且f(-4)=f(0),f(-2)=-1.
          (1)求函數(shù)f(x)的解析式;
          (2)畫出函數(shù)f(x)的圖象,并寫出函數(shù)f(x)的定義域、值域.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=
          x2-x+n
          x2+x+1
          (x∈R,x≠
          n-1
          2
          ,x∈N*)
          ,f(x)的最小值為an,最大值為bn,記cn=(1-an)(1-bn
          則數(shù)列{cn}是
          常數(shù)
          常數(shù)
          數(shù)列.(填等比、等差、常數(shù)或其他沒有規(guī)律)

          查看答案和解析>>

          同步練習冊答案