日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四棱錐P­ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=2,BD=2,E是PB上任意一點(diǎn).

          (1)求證:AC⊥DE;

          (2)已知二面角A­PB­D的余弦值為,若E為PB的中點(diǎn),求EC與平面PAB所成角的正弦值.

           

          【答案】

          (1)見解析   (2)

          【解析】解:(1)證明:∵PD⊥平面ABCD,AC⊂平面ABCD,∴PD⊥AC,

          ∵四邊形ABCD是菱形,∴BD⊥AC,

          又BD∩PD=D,∴AC⊥平面PBD,

          ∵DE⊂平面PBD,∴AC⊥DE.

          (2)在△PDB中,EO∥PD,∴EO⊥平面ABCD,分別以O(shè)A,OB,OE所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,

          設(shè)PD=t,則A(1,0,0),B(0,,0),C(-1,0,0),E,P(0,-,t),=(-1,,0),=(-1,-,t).

          由(1)知,平面PBD的一個(gè)法向量為n1=(1,0,0),設(shè)平面PAB的法向量為n2=(x,y,z),則根據(jù)

          令y=1,得平面PAB的一個(gè)法向量為n2.

          ∵二面角A­PB­D的余弦值為,

          則|cos〈n1,n2〉|=,

          ,

          解得t=2或t=-2 (舍去),

          ∴P(0,-,2).

          設(shè)EC與平面PAB所成的角為θ,

          =(-1,0,-),n2=(,1,1),

          則sin θ=|cos〈,n2〉|=

          ∴EC與平面PAB所成角的正弦值為.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在四棱錐S-ABCD中,平面SAD⊥平面ABCD.四邊形ABCD為正方形,且P 為AD的中點(diǎn),Q為SB的中點(diǎn).
          (Ⅰ)求證:CD⊥平面SAD;
          (Ⅱ)求證:PQ∥平面SCD;
          (Ⅲ)若SA=SD,M為BC中點(diǎn),在棱SC上是否存在點(diǎn)N,使得平面DMN⊥平面ABCD,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (08年臨沂市質(zhì)檢一文) (12分)如圖,在四棱錐S―ABCD中,側(cè)棱SA=SB=SC=SD,底面ABCD是菱形,AC與BD交于O點(diǎn)。

             (1)求證:AC⊥SBD;

             (2)若E為BC中點(diǎn),點(diǎn)P在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動(dòng),并保持PE⊥AC,試指出動(dòng)點(diǎn)P的軌跡,并證明你的結(jié)論。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013屆浙江省杭州市高二上學(xué)期期中考試數(shù)學(xué) 題型:解答題

          (本小題滿分10分)如圖,在四棱錐S—ABCD中,側(cè)棱SA=SB=SC=SD,底面ABCD是菱形,AC與BD交于O點(diǎn).

          (Ⅰ)求證:AC⊥平面SBD;

          (Ⅱ)若E為BC中點(diǎn),點(diǎn)P在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動(dòng),并保持PE⊥AC,試指出動(dòng)點(diǎn)P的軌跡,并證明你的結(jié)論.

           

           

           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:河南省會(huì)考題 題型:解答題

          如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥平面ABCD,且PD=AD=1,S是側(cè)棱PB的中點(diǎn)。 (Ⅰ)試判斷:①直線PD與平面ASC的位置關(guān)系;
          ②平面ASC與平面ABCD的位置關(guān)系(不要求說明理由);
          (Ⅱ)求三棱錐S-ABC的體積。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在四棱錐S—ABCD中,側(cè)棱SA=SB=SC=SD,底面ABCD是菱形,AC與BD交于O點(diǎn).

          (1)求證:AC⊥平面SBD;

          (2)若E為BC中點(diǎn),點(diǎn)P在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動(dòng),并保持PE⊥AC,試指出動(dòng)點(diǎn)P的軌跡,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊答案