日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          在平面直角坐標系xOy中,曲線y=x2-6x+1與坐標軸的交點都在圓C上.
          (1)求圓C的方程;
          (2)若圓C與直線x-y+a=0交于A、B兩點,且OA⊥OB,求a的值.

          解:(1)曲線y=x2-6x+1與y軸的交點為(0,1),與x軸的交點為(3+2,0),(3-2,0)
          故可設C的圓心為(3,t),則有32+(t-1)2=(2)2+t2,解得t=1.
          則圓C的半徑為=3.
          所以圓C的方程為(x-3)2+(y-1)2=9.
          (2)設A(x1,y1),B(x2,y2),其坐標滿足方程組
          消去y,得到方程
          2x2+(2a-8)x+a2-2a+1=0.
          由已知可得,判別式Δ=56-16a-4a2>0.從而
          x1+x2=4-a,x1x2=.①
          由于OA⊥OB,可得x1x2+y1y2=0.
          又y1=x1+a,y2=x2+a,所以
          2x1x2+a(x1+x2)+a2=0.②
          由①,②得a=-1,滿足Δ>0,故a=-1.

          解析

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          在平面直角坐標系xoy中,已知圓心在直線y=x+4上,半徑為2
          2
          的圓C經過坐標原點O,橢圓
          x2
          a2
          +
          y2
          9
          =1(a>0)
          與圓C的一個交點到橢圓兩焦點的距離之和為10.
          (1)求圓C的方程;
          (2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標是
          3
          5
          ,點B的縱坐標是
          12
          13
          ,則sin(α+β)的值是
          16
          65
          16
          65

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          在平面直角坐標系xOy中,若焦點在x軸的橢圓
          x2
          m
          +
          y2
          3
          =1
          的離心率為
          1
          2
          ,則m的值為
          4
          4

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2013•泰州三模)選修4-4:坐標系與參數方程
          在平面直角坐標系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
          3t
          ,0)
          ,其中t≠0.設直線AC與BD的交點為P,求動點P的軌跡的參數方程(以t為參數)及普通方程.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2013•東莞一模)在平面直角坐標系xOy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點為F1(-1,0),且橢圓C的離心率e=
          1
          2

          (1)求橢圓C的方程;
          (2)設橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
          (3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
          16
          7
          相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案