日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知橢圓=1(a>b>0)的離心率為.以該橢圓上的點和橢圓的左、右焦點F1,F(xiàn)2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點時該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點.直線PF1和PF2與橢圓的焦點分別為A、B和C、D.

          (Ⅰ)求橢圓和雙曲線的標準方程:

          (Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1,k2,證明:k1·k2l

          (Ⅲ)是否存在常數(shù),使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在.求λ的值;若不存在,請說明理由.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源:2012-2013學年河北省高三3月月考數(shù)學試卷(解析版) 題型:解答題

          如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.

          (1)求橢圓和雙曲線的標準方程;

          (2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;

          (3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,已知橢圓=1(ab>0)過點(1,),離心率為,左、右焦點分別為F1、F2.點P為直線lxy=2上且不在x軸上的任意一點,直線PF1PF2與橢圓的交點分別為ABC、D,O為坐標原點.

          (1)求橢圓的標準方程.

          (2)設(shè)直線PF1、PF2的斜率分別為k1、k2.

          (ⅰ)證明:=2.

          (ⅱ)問直線l上是否存在點P,使得直線OAOB、OC、OD的斜率kOA、kOB、kOCkOD滿足kOAkOBkOCkOD=0?若存在,求出所有滿足條件的點P的坐標;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在平面直角坐標系xOy中,如圖,已知橢圓=1的左、右頂點為A、B,右焦點為F.設(shè)過點T(t,m)的直線TATB與此橢圓分別交于點M(x1,y1)、N(x2y2),其中m>0,y1>0,y2<0.

          (1)設(shè)動點P滿足PF2PB2=4,求點P的軌跡;

          (2)設(shè)x1=2,x2,求點T的坐標;

          (3)設(shè)t=9,求證:直線MN必過x軸上的一定點(其坐標與m無關(guān)).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,已知橢圓=1(ab>0)的離心率為,以該橢圓上的點和橢圓的左、右焦點F1F2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1PF2與橢圓的交點分別為A、BC、D.

          (1)求橢圓和雙曲線的標準方程;

          (2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;

          (3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案