日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)面BB1C1C為菱形,B1C的中點(diǎn)為O,且AO⊥平面BB1C1C.
          (1)證明:B1C⊥AB;
          (2)若AC⊥AB1 , ∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.

          【答案】
          (1)證明:連接BC1,則O為B1C與BC1的交點(diǎn),

          ∵側(cè)面BB1C1C為菱形,

          ∴BC1⊥B1C,

          ∵AO⊥平面BB1C1C,

          ∴AO⊥B1C,

          ∵AO∩BC1=O,

          ∴B1C⊥平面ABO,

          ∵AB平面ABO,

          ∴B1C⊥AB


          (2)解:作OD⊥BC,垂足為D,連接AD,作OH⊥AD,垂足為H,

          ∵BC⊥AO,BC⊥OD,AO∩OD=O,

          ∴BC⊥平面AOD,

          ∴OH⊥BC,

          ∵OH⊥AD,BC∩AD=D,

          ∴OH⊥平面ABC,

          ∵∠CBB1=60°,

          ∴△CBB1為等邊三角形,

          ∵BC=1,∴OD= ,

          ∵AC⊥AB1,∴OA= B1C=

          由OHAD=ODOA,可得AD= = ,∴OH= ,

          ∵O為B1C的中點(diǎn),

          ∴B1到平面ABC的距離為 ,

          ∴三棱柱ABC﹣A1B1C1的高


          【解析】(1)連接BC1 , 則O為B1C與BC1的交點(diǎn),證明B1C⊥平面ABO,可得B1C⊥AB;(2)作OD⊥BC,垂足為D,連接AD,作OH⊥AD,垂足為H,證明△CBB1為等邊三角形,求出B1到平面ABC的距離,即可求三棱柱ABC﹣A1B1C1的高.
          【考點(diǎn)精析】認(rèn)真審題,首先需要了解直線與平面垂直的性質(zhì)(垂直于同一個(gè)平面的兩條直線平行).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
          (1)求| |;
          (2)已知點(diǎn)D是AB上一點(diǎn),滿足 ,點(diǎn)E是邊CB上一點(diǎn),滿足 . ①當(dāng)λ= 時(shí),求 ;
          ②是否存在非零實(shí)數(shù)λ,使得 ?若存在,求出的λ值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知兩矩形ABCD與ADEF所在的平面互相垂直,AB=1,若將△DEF沿直線FD翻折,使得點(diǎn)E落在邊BC上(即點(diǎn)P),則當(dāng)AD取最小值時(shí),邊AF的長(zhǎng)是;此時(shí)四面體F﹣ADP的外接球的半徑是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù)f(x)= 恰有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
          (1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
          (2)求函數(shù)f(x)的極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(﹣∞,0)上單調(diào)遞減,若實(shí)數(shù)a滿足f(3|2a+1|)>f(﹣ ),則a的取值范圍是(
          A.(﹣∞,﹣ )∪(﹣ ,+∞)
          B.(﹣∞,﹣
          C.(﹣ ,+∞)
          D.(﹣ ,﹣

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)m,n∈R,若直線(m+1)x+(n+1)y﹣2=0與圓(x﹣1)2+(y﹣1)2=1相切,則m+n的取值范圍是(
          A.[1﹣ ,1+ ]
          B.(﹣∞,1﹣ ]∪[1+ ,+∞)
          C.[2﹣2 ,2+2 ]
          D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2}, (Ⅰ)求A∩B、(UA)∪(UB);
          (Ⅱ)若{x|2k﹣1≤x≤2k+1}A,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】己知直線l的斜率為k,它與拋物線y2=4x相交于A,B兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),若 ,則|k|=(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案