日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 選修4-1:幾何證明選講
          過⊙O外一點P作⊙O的切線PA,切點為A,連結(jié)OP與⊙O交于點C,過C作AP的垂線,垂足為D.若PA=12cm,PC=6cm,求CD的長.

          【答案】分析:連接AO,利用PA為圓的切線,可得OA⊥PA,利用勾股定理可得122+r2=(r+6)2,即可得到r.又CD垂直于PA,可得OA∥CD,=,即可得到CD.
          解答:解:連接AO,∵PA為圓的切線,∴△PAO為Rt△,∴122+r2=(r+6)2,
          ∴r=9.
          又CD垂直于PA,∴OA∥CD,∴=,
          解得CD= cm.
          點評:熟練掌握圓的切線的性質(zhì)、勾股定理、平行線分線段成比例定理等是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)選修4-1:幾何證明選講
          如圖,圓O的直徑AB=10,弦DE⊥AB于點H,HB=2.
          (1)求DE的長;
          (2)延長ED到P,過P作圓O的切線,切點為C,若PC=2
          5
          ,求PD的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)A、選修4-1:幾何證明選講 
          如圖,PA與⊙O相切于點A,D為PA的中點,
          過點D引割線交⊙O于B,C兩點,求證:∠DPB=∠DCP.
          B.選修4-2:矩陣與變換
          已知矩陣M=
          12
          2x
          的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.
          C.選修4-4:坐標(biāo)系與參數(shù)方程
          在極坐標(biāo)系中,圓C的方程為ρ=2
          2
          sin(θ+
          π
          4
          )
          ,以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=t
          y=1+2t
          (t為參數(shù)),判斷直線l和圓C的位置關(guān)系.
          D.選修4-5:不等式選講
          求函數(shù)y=
          1-x
          +
          4+2x
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          選修4-1:幾何證明選講
          自圓O外一點P引圓的一條切線PA,切點為A,M為PA的中點,過點M引圓O的割線交該圓于B、C兩點,且∠BMP=100°,∠BPC=40°,求∠MPB的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•徐州模擬)選修4-1:幾何證明選講
          如圖,直線AB經(jīng)過圓上O的點C,并且OA=OB,CA=CB,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=
          12
          ,圓O的半徑為3,求OA的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•南京二模)選修4-1:幾何證明選講
          如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使得CD=AC,連結(jié)AD交圓O于點E,連結(jié)BE與AC交于點F,求證:AE2=EF•BE.

          查看答案和解析>>

          同步練習(xí)冊答案