日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】從集合中,抽取三個(gè)不同的元素構(gòu)成子集.

          (1)求對(duì)任意的滿足的概率;

          (2)若成等差數(shù)列,設(shè)其公差為,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

          【答案】(1).

          (2)隨機(jī)變量的分布列如下:

          .

          【解析】(1)根據(jù)題意,由組合數(shù)計(jì)算公式、古典概型概率的計(jì)算公式進(jìn)行運(yùn)算即可;(2)根據(jù)題意采用列舉法,將滿足題意的等差數(shù)列列舉出來(lái),再由分布列、數(shù)列期望的定義進(jìn)行運(yùn)算即可.

          試題解析:(1)由題意知基本事件數(shù)為,

          而滿足條件,即取出的元素不相鄰,

          則用插空法,有種可能,

          故所求事件的概率.

          (2)分析成等差數(shù)列的情況;

          的情況有7種: , , , , ;

          的情況有5種: , , ;

          的情況有3種: ,

          的情況有1種: .

          故隨機(jī)變量的分布列如下:

          因此, .

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】近年來(lái)空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解心肺疾病是否與性別有關(guān),在市第一人民醫(yī)院隨機(jī)對(duì)入院50人進(jìn)行了問(wèn)卷調(diào)查,得到了如表的列聯(lián)表:

          患心肺疾病

          不患心肺疾病

          合計(jì)

          5

          10

          合計(jì)

          50

          已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為.

          (1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

          (2)是否有99%的把握認(rèn)為患心肺疾病與性別有關(guān)?說(shuō)明你的理由.

          參考格式: ,其中.

          下面的臨界值僅供參考:

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)軸上,過(guò)點(diǎn)的直線交拋物線于兩點(diǎn),線段的長(zhǎng)度為8, 的中點(diǎn)到軸的距離為3.

          (1)求拋物線的標(biāo)準(zhǔn)方程;

          (2)設(shè)直線軸上的截距為6,且拋物線交于兩點(diǎn),連結(jié)并延長(zhǎng)交拋物線的準(zhǔn)線于點(diǎn),當(dāng)直線恰與拋物線相切時(shí),求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù) 的定義域?yàn)?/span> ,若對(duì)于任意的 , ,都有 ,且當(dāng) 時(shí),有

          1)證明: 為奇函數(shù);

          2)判斷 上的單調(diào)性,并證明;

          3)設(shè) ,若 )對(duì) 恒成立,求實(shí)數(shù) 的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)設(shè).

          ①若,曲線處的切線過(guò)點(diǎn),求的值;

          ②若,求在區(qū)間上的最大值.

          (2)設(shè), 兩處取得極值,求證: 不同時(shí)成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】【選做題】本題包括A、B、C、D四小題,請(qǐng)選定其中兩小題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩小題評(píng)分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

          A.[選修4-1:幾何證明選講]

          如圖, 分別與圓相切于點(diǎn) , 經(jīng)過(guò)圓心,且,求證: .

          B.[選修4-2:矩陣與變換]

          在平面直角坐標(biāo)系中,已知點(diǎn), , ,先將正方形繞原點(diǎn)逆時(shí)針旋轉(zhuǎn),再將所得圖形的縱坐標(biāo)壓縮為原來(lái)的一半、橫坐標(biāo)不變,求連續(xù)兩次變換所對(duì)應(yīng)的矩陣.

          C.[選修4-4:坐標(biāo)系與參數(shù)方程]

          在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)).現(xiàn)以為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,求曲線的極坐標(biāo)方程.

          D.[選修4-5:不等式選講]

          已知為互不相等的正實(shí)數(shù),求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某城市要建成宜商、宜居的國(guó)際化新城,該城市的東城區(qū)、西城區(qū)分別引進(jìn)8個(gè)廠家,現(xiàn)對(duì)兩個(gè)區(qū)域的16個(gè)廠家進(jìn)行評(píng)估,綜合得分情況如莖葉圖所示.

          (1)根據(jù)莖葉圖判斷哪個(gè)區(qū)域廠家的平均分較高;

          (2)規(guī)定85分以上(含85分)為優(yōu)秀廠家,若從該兩個(gè)區(qū)域各選一個(gè)優(yōu)秀廠家,求得分差距不超過(guò)5分的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,圓的直角坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)),射線的極坐標(biāo)方程為

          1)求圓和直線的極坐標(biāo)方程;

          (2)已知射線與圓的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

          日期

          12月1日

          12月2日

          12月3日

          12月4日

          12月5日

          溫差x (℃)

          10

          11

          13

          12

          8

          發(fā)芽數(shù)y(顆)

          23

          25

          30

          26

          16

          該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

          (1)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程x;

          (2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(1)中所得的線性回歸方程是否可靠?

          附:

          查看答案和解析>>

          同步練習(xí)冊(cè)答案