日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若非零函數(shù)對(duì)任意實(shí)數(shù)均有,且當(dāng)時(shí)
          (1)求證:
          (2)求證:為R上的減函數(shù);
          (3)當(dāng)時(shí), 對(duì)時(shí)恒有,求實(shí)數(shù)的取值范圍.

          (1)證法一:

          當(dāng)時(shí), 
           則
          故對(duì)于恒有                    
          證法二: 為非零函數(shù)   
          (2)證明:令
          , 又 即
           又 
          為R上的減函數(shù)
          (3)實(shí)數(shù)的取值范圍為

          解析試題分析:(1)由題意可取代入等式,得出關(guān)于的方程,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/32/b/1s5sg2.png" style="vertical-align:middle;" />為非零函數(shù),故,再令代入等式,可證,從而證明當(dāng)時(shí),有;(2)著眼于減函數(shù)的定義,利用條件當(dāng)時(shí),有,根據(jù)等式,令,可得,從而可證該函數(shù)為減函數(shù).(3)根據(jù),由條件可求得,將替換不等式中的,再根據(jù)函數(shù)的單調(diào)性可得,結(jié)合的范圍,從而得解.
          試題解析:(1)證法一:

          當(dāng)時(shí), 
           則
          故對(duì)于恒有                             4分
          證法二: 為非零函數(shù)   
          (2)令
          , 又 即
           又 
          為R上的減函數(shù)                               8分
          (3),        10分
          則原不等式可變形為
          依題意有 對(duì)恒成立

          故實(shí)數(shù)的取值范圍為       13分
          考點(diǎn):1.函數(shù)的概念;2.函數(shù)的單調(diào)性;3.二次函數(shù).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù),h(x)=2alnx,.
          (1)當(dāng)a∈R時(shí),討論函數(shù)的單調(diào)性;
          (2)是否存在實(shí)數(shù)a,對(duì)任意的,且,都有
          恒成立,若存在,求出a的取值范圍;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖所示,是一個(gè)矩形花壇,其中AB=4米,AD=3米.現(xiàn)將矩形花壇擴(kuò)建成一個(gè)更大的矩形花園,要求:B在上,D在上,對(duì)角線(xiàn)過(guò)C點(diǎn),且矩形的面積小于64平方米.

          (Ⅰ)設(shè)長(zhǎng)為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并寫(xiě)出該函數(shù)的定義域;
          (Ⅱ)當(dāng)的長(zhǎng)度是多少時(shí),矩形的面積最小?并求最小面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)
          (Ⅰ)令,求關(guān)于的函數(shù)關(guān)系式及的取值范圍;
          (Ⅱ)求函數(shù)的值域,并求函數(shù)取得最小值時(shí)的的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          為正實(shí)數(shù)且滿(mǎn)足
          (1)求的最大值為;(2)求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)時(shí)有最大值2,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          求值:
          (1)
          (2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)
          (1)當(dāng),且時(shí),求證: 
          (2)是否存在實(shí)數(shù),使得函數(shù)的定義域、值域都是?若存在,則求出的值,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù).
          (Ⅰ)若的值域;
          (Ⅱ)若存在實(shí)數(shù),當(dāng)恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案