日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 本小題滿分10分)

          求適合下列條件的拋物線的標(biāo)準(zhǔn)方程:

          (1)過(guò)點(diǎn)(-3,2);

          (2)焦點(diǎn)在直線x-2y-4=0上.

           

          【答案】

          (1); ; (2)  ;.

          【解析】

          試題分析:(1)由于點(diǎn)(-3,2)在第二象限,因而拋物線的開(kāi)口可能向左,也可能向上,所以可設(shè)所求拋物線的標(biāo)準(zhǔn)方程為,然后根據(jù)過(guò)點(diǎn)(-3,2)代入方程即可求出p值.

          (2)因?yàn)閽佄锞的焦點(diǎn)在直線x-2y-4=0上,并且在坐標(biāo)軸上,因而拋物線的焦點(diǎn)有(4,0),和(0,-2)兩個(gè),因而所求拋物線的標(biāo)準(zhǔn)方程也有兩個(gè)分別是開(kāi)口向下和開(kāi)口向右.

          考點(diǎn):拋物線的標(biāo)準(zhǔn)方程,焦點(diǎn)與標(biāo)準(zhǔn)方程的對(duì)應(yīng)關(guān)系.

          點(diǎn)評(píng):解決本小題關(guān)鍵是根據(jù)題目所給條件確定是哪一種標(biāo)準(zhǔn)方程形式,然后再采用待定系數(shù)法求解即可.

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (選做題)本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評(píng)分,解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
          A.[選修4-1:幾何證明選講]
          已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(diǎn)(不與點(diǎn)A,C重合),延長(zhǎng)BD至點(diǎn)E.
          求證:AD的延長(zhǎng)線平分∠CDE
          B.[選修4-2:矩陣與變換]
          已知矩陣A=
          12
          -14

          (1)求A的逆矩陣A-1;
          (2)求A的特征值和特征向量.
          C.[選修4-4:坐標(biāo)系與參數(shù)方程]
          已知曲線C的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=
          1
          2
          t
          y=
          3
          2
          t+1
          (t為參數(shù)),求直線l被曲線C截得的線段長(zhǎng)度.
          D.[選修4-5,不等式選講](本小題滿分10分)
          設(shè)a,b,c均為正實(shí)數(shù),求證:
          1
          2a
          +
          1
          2b
          +
          1
          2c
          1
          b+c
          +
          1
          c+a
          +
          1
          a+b

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          本題包括(1)、(2)、(3)、(4)四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
          若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
          (1)、選修4-1:幾何證明選講
          如圖,∠PAQ是直角,圓O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B,C.求證:BT平分∠OBA
          (2)選修4-2:矩陣與變換(本小題滿分10分)
          若點(diǎn)A(2,2)在矩陣M=
          cosα-sinα
          sinαcosα
          對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣
          (3)選修4-2:矩陣與變換(本小題滿分10分)
          在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上的動(dòng)點(diǎn),B為直線ρcosθ+ρsinθ-7=0上的動(dòng)點(diǎn),求AB的最小值.
          (4)選修4-5:不等式選講(本小題滿分10分)
          已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          必做題:(本小題滿分10分,請(qǐng)?jiān)诖痤}指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟)
          已知an(n∈N*)是二項(xiàng)式(2+x)n的展開(kāi)式中x的一次項(xiàng)的系數(shù).
          (Ⅰ)求an
          (Ⅱ)是否存在等差數(shù)列{bn},使an=b1cn1+b2cn2+b3cn3+…+bncnn對(duì)一切正整數(shù)n都成立?并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本小題滿分10分)數(shù)學(xué)的美是令人驚異的!如三位數(shù)153,它滿足153=13+53+33,即這個(gè)整數(shù)等于它各位上的數(shù)字的立方的和,我們稱這樣的數(shù)為“水仙花數(shù)”.請(qǐng)您設(shè)計(jì)一個(gè)算法,找出大于100,小于1000的所有“水仙花數(shù)”.
          (1)用自然語(yǔ)言寫(xiě)出算法;
          (2)畫(huà)出流程圖.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (選修4-2:矩陣與變換)(本小題滿分10分)
          求矩陣A=
          32
          21
          的逆矩陣.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案