日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,AB=AA1,E是棱BB1的中點.
          (1)求證:平面A1EC⊥平面AA1C1C;
          (2)若我們把平面A1EC與平面A1B1C1所成的銳二面角為60°時的正三棱柱稱為“黃金棱柱”,請判斷此三棱柱是否為“黃金棱柱”,并說明理由.
          分析:(1)連接A1C與AC1交于點F,連接EF,欲證平面A1EC⊥平面AA1C1C,根據(jù)面面垂直的判定定理可知在平面A1EC內(nèi)一直線與平面AA1C1C垂直,而根據(jù)線面垂直的判定定理可得EF⊥面AA1C1C,滿足定理條件;
          (2)延長CE交C1B1的延長線于點H,根據(jù)二面角平面角的定義可知∠CA1C1為平面A1EC與平面A1B1C1所成二面角的平面角,利用反證法可證得三棱柱不能成為“黃金棱柱”.
          解答:(1)證明:連接A1C與AC1交于點F,連接EF,
          則由條件可得EC=EA1,則EF⊥A1C.同理EC1=EA,則EF⊥AC1,∴EF⊥面AA1C1C.
          而EF?面A1EC,所以平面A1EC⊥平面AA1C1C.
          (2)解:延長CE交C1B1的延長線于點H,
          則有C1B1=B1H=A1B1,則∠HA1C1=90°,且∠CA1H=90°,
          所以∠CA1C1為平面A1EC與平面A1B1C1所成二面角的平面角.
          若此正三棱柱為“黃金棱柱”,則∠CA1C1=60°,應有CC1=
          3
          A1C1,與條件AB=AA1矛盾.
          所以此三棱柱不能成為“黃金棱柱”.
          點評:本小題主要考查平面與平面垂直的判定,以及二面角及其度量和反證法的運用等有關基礎知識,考查空間想象能力、運算能力和推理論證能力,考查轉(zhuǎn)化思想,屬于基礎題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,AB=1,若二面角C-AB-C1的大小為60°,則點C到平面C1AB的距離為( 。
          A、
          3
          4
          B、
          1
          2
          C、
          3
          2
          D、1

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,若AD與平面AA1CC1所成的角為a,則sina=
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,D、E、G分別是AB、BB1、AC1的中點,AB=BB1=2.
          (Ⅰ)在棱B1C1上是否存在點F使GF∥DE?如果存在,試確定它的位置;如果不存在,請說明理由;
          (Ⅱ)求截面DEG與底面ABC所成銳二面角的正切值;
          (Ⅲ)求B1到截面DEG的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,AA1=4,AB=2,M是AC的中點,點N在AA1上,AN=
          14

          (Ⅰ)求BC1與側(cè)面ACC1A1所成角的大;
          (Ⅱ)求二面角C1-BM-C的正切值;
          (Ⅲ)證明MN⊥BC1

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•馬鞍山二模)如圖,在正三棱柱ABC一DEF中,AB=2,AD=1,P是CF的延長線上一點,過A、B、P三點的平面交FD于M,交EF于N.
          (I)求證:MN∥平面CDE:
          (II)當平面PAB⊥平面CDE時,求三梭臺MNF-ABC的體積.

          查看答案和解析>>

          同步練習冊答案