【題目】已知橢圓的右焦點(diǎn)為
,且過點(diǎn)
求橢圓的標(biāo)準(zhǔn)方程;
設(shè)直線l:
與橢圓在第一象限的交點(diǎn)為M,過點(diǎn)F且斜率為
的直線與l交于點(diǎn)N,若
與
的面積之比為3:
為坐標(biāo)原點(diǎn)
,求k的值.
【答案】(1);(2)
或
【解析】
(1)根據(jù)題意列出有關(guān)的方程組,求出這兩個(gè)數(shù)的值,即可求出橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)的坐標(biāo)為
,點(diǎn)
的坐標(biāo)
,利用已知條件可得
,然后將直線
的方程分別與橢圓方程和直線
的方程聯(lián)立,求出點(diǎn)
的坐標(biāo),結(jié)合條件可求出
的值.
(1)由題意可知,解得
(負(fù)值舍去),
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)設(shè)點(diǎn)的坐標(biāo)為
,點(diǎn)
的坐標(biāo)
,由題可知
,
與
的面積之比為3:2,
與
的面積之比為2:5,
也即.
由,消去
,可得
,
易知直線的方程為
,
由,消去
,可得
,
所以,整理得
,解得
或
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式
.
(1)當(dāng)時(shí),解不等式;
(2)如果不等式的解集為空集,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若存在
,使
成立,則稱
為
的不動(dòng)點(diǎn).已知函數(shù)
.
(1)當(dāng),
時(shí),求函數(shù)
的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù),函數(shù)
恒有兩個(gè)相異的不動(dòng)點(diǎn),求
的取值范圍;
(3)在(2)的條件下,若的兩個(gè)不動(dòng)點(diǎn)為
,
,且
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AC=3,BC=4,AB=5,以AB所在直線為軸,三角形面旋轉(zhuǎn)一周形成一旋轉(zhuǎn)體,求此旋轉(zhuǎn)體的表面積和體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國(guó)電子商務(wù)蓬勃發(fā)展,有關(guān)部門推出了針對(duì)網(wǎng)購(gòu)平臺(tái)的商品和服務(wù)的評(píng)價(jià)系統(tǒng),從該系統(tǒng)中隨機(jī)選出100名交易者,并對(duì)其交易評(píng)價(jià)進(jìn)行了統(tǒng)計(jì),網(wǎng)購(gòu)者對(duì)商品的滿意率為0.6,對(duì)服務(wù)的滿意率為0.75,其中對(duì)商品和服務(wù)都滿意的有40人.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有
的把握認(rèn)為“網(wǎng)購(gòu)者對(duì)服務(wù)滿意與對(duì)商品滿意之間有關(guān)”?
對(duì)服務(wù)滿意 | 對(duì)服務(wù)不滿意 | 合計(jì) | |
對(duì)商品滿意 | |||
對(duì)商品不滿意 | |||
合計(jì) |
(2)若對(duì)商品和服務(wù)都不滿意者的集合為.已知
中有2名男性,現(xiàn)從
中任取2人調(diào)查其意見.求取到的2人恰好是一男一女的概率.
附: (其中
為樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
()若
,求曲線
在點(diǎn)
處的切線方程.
()求函數(shù)
的單調(diào)區(qū)間.
()設(shè)函數(shù)
,若對(duì)于任意
,都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
為直角梯形,
,
,平面
底面
,
為
的中點(diǎn),
是棱
上的點(diǎn),
,
.
(Ⅰ)求證:平面平面
;
(Ⅱ)若三棱錐的體積是四棱錐
體積的
,設(shè)
,試確定
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com