日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)某地政府為科技興市,欲在如圖所示的矩形ABCD的非農(nóng)業(yè)用地中規(guī)劃出一個高科技工業(yè)園區(qū)(如圖中陰影部分),形狀為直角梯形QPRE(線段EQ和RP為兩個底邊),已知AB=2km,BC=6km,AE=BF=4km,其中AF是以A為頂點、AD為對稱軸的拋物線段.試求該高科技工業(yè)園區(qū)的最大面積.
          分析:先以A為原點,AB所在的直線為x軸建立直角坐標(biāo)系得到A、F、E、C的坐標(biāo).設(shè)出拋物線的解析式把F坐標(biāo)代入可求出,根據(jù)坐標(biāo)EC所在直線的方程,設(shè)出P的坐標(biāo)表示出PQ、QE、PR,利用梯形的面積公式表示出S,求出S′=0時的值來討論S的增減性得到S的最大值即可.
          解答:精英家教網(wǎng)解:以A為原點,AB所在直線為x軸建立直角坐標(biāo)系如圖,
          則A(0,0),F(xiàn)(2,4),
          由題意可設(shè)拋物線段所在拋物線的方程為y=ax2(a>0),
          由4=a×22得,a=1,
          ∴AF所在拋物線的方程為y=x2,
          又E(0,4),C(2,6),
          ∴EC所在直線的方程為y=x+4,
          設(shè)P(x,x2)(0<x<2),
          則PQ=x,QE=4-x2,PR=4+x-x2,
          ∴工業(yè)園區(qū)的面積S=
          1
          2
          (4-x2+4+x-x2)•x=-x3+
          1
          2
          x2+4x
          (0<x<2),
          ∴S'=-3x2+x+4,令S'=0得x=
          4
          3
          或x=-1(舍去負(fù)值),
          當(dāng)x變化時,S'和S的變化情況如下表:
          精英家教網(wǎng)
          由表格可知,當(dāng)x=
          4
          3
          時,S取得最大值
          104
          27

          答:該高科技工業(yè)園區(qū)的最大面積
          104
          27
          點評:考查學(xué)生根據(jù)實際問題選擇函數(shù)關(guān)系的能力,以及會利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)最值的能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)某地政府為科技興市,欲將如圖所示的一塊不規(guī)則的非農(nóng)業(yè)用地規(guī)劃建成一個矩形的高科技工業(yè)園區(qū).已知AB⊥BC,OA∥BC,且AB=BC=4km,AO=2km,曲線段OC是以點O為頂點且開口向上的拋物線的一段.如果要使矩形的相鄰兩邊分別落在AB,BC上,且一個頂點落在曲線段OC上.問:應(yīng)如何規(guī)劃才能使矩形工業(yè)園區(qū)的用地面積最大?并求出最大的用地面積(精確到0.1km2).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          某地政府為科技興市,欲將如圖所示的一塊不規(guī)則的非農(nóng)業(yè)用地規(guī)劃成一個矩形高科技工業(yè)園區(qū).已知AB⊥BC,DA∥BC且AB=BC=2AD=4km,曲線段OC是以點O為頂點且開口向右的拋物線的一段.
          (1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線段的方程;
          (2)如果要使矩形的相鄰兩邊分別落在AB、BC上,且一個頂點落在DC上,問如何規(guī)劃才能使矩形工業(yè)園區(qū)的用地面積最大?并求出最大的用地面積(精確到0.1km2).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          某地政府為科技興市,欲在如圖所示的矩形ABCD的非農(nóng)業(yè)用地中規(guī)劃出一個高科技工業(yè)園區(qū)(如圖中陰影部分),形狀為直角梯形QPRE(線段EQ和RP為兩個底邊),已知AB=2km,BC=6km,AE=BF=4km其中曲線段AF是以A為頂點、AD為對稱軸的拋物線的一部分.分別以直線AB,AD為x軸和y軸建立平面直角坐標(biāo)系.
          (1)求曲線段AF所在拋物線的方程;
          (2)設(shè)點P的橫坐標(biāo)為x,高科技工業(yè)園區(qū)的面積為S.試求S關(guān)于x的函數(shù)表達(dá)式,并求出工業(yè)園區(qū)面積S的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南京師大附中高三(上)12月學(xué)情反饋數(shù)學(xué)試卷(解析版) 題型:解答題

          某地政府為科技興市,欲在如圖所示的矩形ABCD的非農(nóng)業(yè)用地中規(guī)劃出一個高科技工業(yè)園區(qū)(如圖中陰影部分),形狀為直角梯形QPRE(線段EQ和RP為兩個底邊),已知AB=2km,BC=6km,AE=BF=4km,其中AF是以A為頂點、AD為對稱軸的拋物線段.試求該高科技工業(yè)園區(qū)的最大面積.

          查看答案和解析>>

          同步練習(xí)冊答案