日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}:a1=1,a2=2,a3=r,an+3=an+2(n是正整數(shù)),與數(shù)列{bn}:b1=1,b2=0,b3=-1,b4=0,bn+4=bn(n是正整數(shù)).

          記Tn=b1a1+b2a2+b3a3+…+bnan

          (1)若a1+a2+a3+…+a12=64,求r的值;

          (2)求證:當(dāng)n是正整數(shù)時(shí),T12n=-4n;

          (3)已知r>0,且存在正整數(shù)m,使得在T12n+1,T12m+2,…,T12m+12中有4項(xiàng)為100.求r的值,并指出哪4項(xiàng)為100.

          答案:
          解析:

            [解](1)

             2分

            ∵ 4分

            [證明](2)用數(shù)學(xué)歸納法證明:當(dāng)

           、佼(dāng)n=1時(shí),等式成立 6分

            ②假設(shè)n=k時(shí)等式成立,即

            那么當(dāng)時(shí),

             8分

            

            等式也成立.

            根據(jù)①和②可以斷定:當(dāng) 10分

            [解](3)

            

             13分

            ∵4m+1是奇數(shù),均為負(fù)數(shù),

            ∴這些項(xiàng)均不可能取到100. 15分

            此時(shí),為100. 18分


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足
          a1-1
          2
          +
          a2-1
          22
          +…+
          an-1
          2n
          =n2+n(n∈N*)

          (I)求數(shù)列{an}的通項(xiàng)公式;
          (II)求數(shù)列{an}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足a 1=
          2
          5
          ,且對(duì)任意n∈N*,都有
          an
          an+1
          =
          4an+2
          an+1+2

          (1)求證:數(shù)列{
          1
          an
          }為等差數(shù)列,并求{an}的通項(xiàng)公式;
          (2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求證:Tn
          4
          15

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足a 1=
          2
          5
          ,且對(duì)任意n∈N+,都有
          an
          an+1
          =
          4an+2
          an+1+2

          (1)求{an}的通項(xiàng)公式;
          (2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求證:Tn
          4
          15

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足a n+an+1=
          1
          2
          (n∈N+)
          ,a 1=-
          1
          2
          ,Sn是數(shù)列{an}的前n項(xiàng)和,則S2013=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}:,,,…,,…,其中a是大于零的常數(shù),記{an}的前n項(xiàng)和為Sn,計(jì)算S1,S2,S3的值,由此推出計(jì)算Sn的公式,并用數(shù)學(xué)歸納法加以證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案