已知是拋物線
上的兩個(gè)點(diǎn),點(diǎn)
的坐標(biāo)為
,直線
的斜率為
.設(shè)拋物線
的焦點(diǎn)在直線
的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)C為W上一點(diǎn),且,過(guò)
兩點(diǎn)分別作W的切線,記兩切線的交點(diǎn)為
. 判斷四邊形
是否為梯形,并說(shuō)明理由.
(Ⅰ);(2)四邊形
不可能為梯形,理由詳見(jiàn)解析.
解析試題分析:(Ⅰ)(Ⅰ)直線過(guò)點(diǎn)
,且斜率為k,所以直線方程可設(shè)為
,若焦點(diǎn)
在直線
的下方,則滿足不等式
,代入求
的范圍;(Ⅱ)設(shè)直線
的方程為
,
,分別與拋物線
聯(lián)立,因?yàn)橹本和拋物線的一個(gè)交點(diǎn)坐標(biāo)
已知,故可利用韋達(dá)定理求出切點(diǎn)
的橫坐標(biāo),則可求在
點(diǎn)處的切線斜率,若四邊形
是否為梯形,則有得
或
,根據(jù)斜率相等列方程,所得方程無(wú)解,故四邊形
不是梯形.
試題解析:(Ⅰ)解:拋物線的焦點(diǎn)為
.由題意,得直線
的方程為
,
令,得
,即直線
與y軸相交于點(diǎn)
.因?yàn)閽佄锞
的焦點(diǎn)在直線
的下方,
所以,解得
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/49/b/an45r1.png" style="vertical-align:middle;" />,所以
.
(Ⅱ)解:結(jié)論:四邊形不可能為梯形.理由如下:
假設(shè)四邊形為梯形.由題意,設(shè)
,
,
,
聯(lián)立方程,消去y,得
,由韋達(dá)定理,得
,所以
.
同理,得.對(duì)函數(shù)
求導(dǎo),得
,所以拋物線
在點(diǎn)
處的切線
的斜率為
,拋物線
在點(diǎn)
處的切線
的斜率為
.
由四邊形為梯形,得
或
.
若,則
,即
,因?yàn)榉匠?img src="http://thumb.zyjl.cn/pic5/tikupic/ea/d/1gmyq4.png" style="vertical-align:middle;" />無(wú)解,所以
與
不平行.
若,則
,即
,因?yàn)榉匠?img src="http://thumb.zyjl.cn/pic5/tikupic/17/9/1djtx2.png" style="vertical-align:middle;" />無(wú)解,所以
與
不平行.所以四邊形
不是梯形,與假設(shè)矛盾.因此四邊形
不可能為梯形.
考點(diǎn):1、直線的方程;2、直線和拋物線的位置關(guān)系;3、導(dǎo)數(shù)的幾何意義.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為
,左右焦點(diǎn)分別為
,且
.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)的直線與橢圓
相交于
兩點(diǎn),且
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的頂在坐標(biāo)原點(diǎn),焦點(diǎn)
到直線
的距離是
(1)求拋物線的方程;
(2)若直線與拋物線
交于
兩點(diǎn),設(shè)線段
的中垂線與
軸交于點(diǎn)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知線段MN的兩個(gè)端點(diǎn)M、N分別在軸、
軸上滑動(dòng),且
,點(diǎn)P在線段MN上,滿足
,記點(diǎn)P的軌跡為曲線W.
(1)求曲線W的方程,并討論W的形狀與的值的關(guān)系;
(2)當(dāng)時(shí),設(shè)A、B是曲線W與
軸、
軸的正半軸的交點(diǎn),過(guò)原點(diǎn)的直線與曲線W交于C、D兩點(diǎn),其中C在第一象限,求四邊形ACBD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:的一個(gè)焦點(diǎn)是(1,0),兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)Q(4,0)且不與坐標(biāo)軸垂直的直線l交橢圓C于A、B兩點(diǎn),設(shè)點(diǎn)A關(guān)于x軸的
對(duì)稱(chēng)點(diǎn)為A1.求證:直線A1B過(guò)x軸上一定點(diǎn),并求出此定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知過(guò)點(diǎn)
的橢圓
:
的右焦點(diǎn)為
,過(guò)焦點(diǎn)
且與
軸不重合的直線與橢圓
交于
,
兩點(diǎn),點(diǎn)
關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱(chēng)點(diǎn)為
,直線
,
分別交橢圓
的右準(zhǔn)線
于
,
兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)的坐標(biāo)為
,試求直線
的方程;
(3)記,
兩點(diǎn)的縱坐標(biāo)分別為
,
,試問(wèn)
是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的左、右焦點(diǎn)分別為
、
,
為原點(diǎn).
(1)如圖1,點(diǎn)為橢圓
上的一點(diǎn),
是
的中點(diǎn),且
,求點(diǎn)
到
軸的距離;
(2)如圖2,直線與橢圓
相交于
、
兩點(diǎn),若在橢圓
上存在點(diǎn)
,使四邊形
為平行四邊形,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:
的離心率為
,右焦點(diǎn)為
,右頂點(diǎn)
在圓
:
上.
(Ⅰ)求橢圓和圓
的方程;
(Ⅱ)已知過(guò)點(diǎn)的直線
與橢圓
交于另一點(diǎn)
,與圓
交于另一點(diǎn)
.請(qǐng)判斷是否存在斜率不為0的直線
,使點(diǎn)
恰好為線段
的中點(diǎn),若存在,求出直線
的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在拋物線y2=4x上恒有兩點(diǎn)關(guān)于直線l:y=kx+3對(duì)稱(chēng),求k的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com