日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 己知數(shù)列{an}的前n項和為Sn,a1=2,當n≥2時,Sn-1+1,an,Sn+1成等差數(shù)列.
          (1)求數(shù)列{an}的通項公式;
          (2)設bn=
          3n
          SnSn+1
          ,Tn是數(shù)列{bn}的前n項和,求使得Tn
          m
          20
          對所有n∈N*都成立的最小正整數(shù)m.
          分析:(1)利用an=
          S1,n=1
          Sn-Sn-1,n≥2
          及已知可得an+1=3an,n≥2,又a1=2,再利用等比數(shù)列的通項公式即可得出;
          (2)利用等比數(shù)列的前n項和公式即可得出Sn,即可得出bn,再利用“裂項求和”即可得出Tn,進而得出m.
          解答:解:(1)當n≥2時,2an=Sn-1+1+Sn+1…①
          ∴2an+1=Sn+1+Sn+1+1…②
          ②-①化簡得an+1=3an,n≥2,又a1=2,
          ∴數(shù)列{an}是以2為首項,3為公比的等比數(shù)列,
          an=2×3n-1
          (2)由數(shù)列{an}是以2為首項,3為公比的等比數(shù)列,
          Sn=
          2×(3n-1)
          3-1
          =3n-1.
          bn=
          3n
          SnSn+1
          =
          1
          3n-1
          -
          1
          3n+1-1

          Tn=
          1
          2
          -
          1
          3n+1-1
          1
          2
          m
          20
          1
          2
          恒成立,所以最小正整數(shù)m的值為10.
          點評:本題綜合考查了an=
          S1,n=1
          Sn-Sn-1,n≥2
          、等比數(shù)列的通項公式及其前n項和公式、“裂項求和”等基礎知識與基本方法,屬于難題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          己知數(shù)列{an}的前n項和為Sn=n2+
          12
          n

          (I)求a1,及數(shù)列{an}的通項公式;
          ( II)數(shù)列{an}是等差數(shù)列嗎?如果是,求它的公差是多少;如果不是說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          己知數(shù)列{an}的前n項和為Sn,a1=2,當n≥2時,Sn-1+1,an,Sn+1成等差數(shù)列.
          (1)求數(shù)列{an}的通項公式;
          (2)設bn=log3
          an+1
          2
          ,Tn是數(shù)列{
          1
          bnbn+1
          }
          的前n項和,求使得Tn
          m
          20
          對所有n∈N*都成立的最小正整數(shù)m.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          己知數(shù)列{an}的前n項和滿足Sn=2n+1-1,則an=
          3,n=1
          2n,n≥2
          3,n=1
          2n,n≥2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•溫州二模)己知數(shù)列{an}的前n項和為Sn,a1=2.當n≥2時.Sn-1+l,an.Sn+1成等差數(shù)列.
          (I)求證:{Sn+1}是等比數(shù)列:
          (II)求數(shù)列{nan}的前n項和.

          查看答案和解析>>

          同步練習冊答案