日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線的頂點為,焦點.

          1)求拋物線的方程;

          2)過作直線交拋物線于、兩點.若直線、分別交直線、兩點,求的最小值.

          【答案】1;(2

          【解析】

          (1)由拋物線的幾何性質(zhì)及題設(shè)條件焦點,可直接求得,確定出拋物線的開口方向,寫出物線的標(biāo)準(zhǔn)方程.

          (2)由題意,可,,直線的方程為,將直線方程與拋物線方程聯(lián)立,寫出韋達定理,再結(jié)合弦長公式求出,分別求出即可表示出,最后利用換元法和二次函數(shù),即可求得最小值.

          ()由題意可設(shè)拋物線的方程為,則,解得,

          故拋物線的方程為

          (2)設(shè),,直線的方程為,

          消去,整理得,

          所以,

          從而有,

          解得點的橫坐標(biāo)為,

          同理可得點的橫坐標(biāo)為

          所以

          ,

          ,,則,

          當(dāng)時,,

          當(dāng)時,,

          綜上所述,當(dāng),即時,的最小值是.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx=aex,gx=lnx-lna,其中a為常數(shù),且曲線y=fx)在其與y軸的交點處的切線記為l1,曲線y=gx)在其與x軸的交點處的切線記為l2,且l1l2

          1)求l1l2之間的距離;

          2)若存在x使不等式成立,求實數(shù)m的取值范圍;

          3)對于函數(shù)fx)和gx)的公共定義域中的任意實數(shù)x0,稱|fx0-gx0|的值為兩函數(shù)在x0處的偏差.求證:函數(shù)fx)和gx)在其公共定義域內(nèi)的所有偏差都大于2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】己知p:函數(shù)fx)在R上是增函數(shù),fm2)<fm+2)成立;q:方程1mR)表示雙曲線.

          1)若p為真命題,求m的取值范圍;

          2)若pq為真,pq為假,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸為非負半軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

          1)求直線的直角坐標(biāo)方程和曲線的普通方程;

          2)求直線與曲線交于兩點,線段的中點的橫坐標(biāo)為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,是邊長為2的正方形,平面平面,且是線段的中點,過作直線是直線上一動點.

          1)求證:;

          2)若直線上存在唯一一點使得直線與平面垂直,求此時二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的離心率為,過橢圓右焦點作兩條互相垂直的弦.當(dāng)直線斜率為0時,

          1)求橢圓的方程;

          2)求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的非負半軸為極軸建立極坐標(biāo)系.已知點P的極坐標(biāo)為,直線l的極坐標(biāo)方程為ρcosa,且點P在直線l.

          1)求a的值及直線l的直角坐標(biāo)方程;

          2)曲線的極坐標(biāo)方程為.交于兩點,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】等差數(shù)列中,,分別是下表第一、二、三行中的某一個數(shù),且其中的任何兩個數(shù)不在下表的同一列.

          第一列

          第二列

          第三列

          第一行

          5

          8

          2

          第二行

          4

          3

          12

          第三行

          16

          6

          9

          1)請選擇一個可能的組合,并求數(shù)列的通項公式;

          2)記(1)中您選擇的的前項和為,判斷是否存在正整數(shù),使得,,成等比數(shù)列,若有,請求出的值;若沒有,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形中,分別在上,且,沿 將四邊形折成四邊形,使點在平面上的射影在直線

          (1)求證:平面平面;

          (2)求證:平面

          (3)求二面角的正弦值

          查看答案和解析>>

          同步練習(xí)冊答案