日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 12、設(shè)定義在R上的偶函數(shù)f(x)滿足f(x+1)+f(x)=1,且當(dāng)x∈[1,2]時(shí),f(x)=2-x,則f(-2004.5)=
          0.5
          分析:由f(x+1)+f(x)=1推出函數(shù)的周期是2,利用周期性對(duì)f(-2004.5)化簡(jiǎn),代入已知的解析式求值即可.
          解答:解:由已知f(x+1)+f(x)=1在R上恒成立,故有f(x-1)+f(x)=1,兩式相減得f(x+1)-f(x-1)=0,即f(x+1)=f(x-1)恒成立,故函數(shù)的周期是2
          ∴f(-2004.5)=f(-0.5)=f(1.5)
          又當(dāng)x∈[1,2]時(shí),f(x)=2-x,
          ∴f(1.5)=2-1.5=0.5
          故答案為:0.5
          點(diǎn)評(píng):本題考查的周期性,由恒等式得函數(shù)函數(shù)的周期是2是求解本題的關(guān)鍵,此需要理解恒等式的意義.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)定義在R上的偶函數(shù)f(x)在(-∞,0)上為增函數(shù),且f(-1)=0,則不等式x[f(x)+f(-x)]<0的解集為
          (-1,0)∪(1,+∞)
          (-1,0)∪(1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)定義在R上的偶函數(shù)f(x)滿足f(x+1)+f(x)=1,且當(dāng)x∈[1,2]時(shí),f(x)=2-x,則f(8.5)=
          0.5
          0.5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),f′(x)是f(x)的導(dǎo)函數(shù),當(dāng)x∈[0,1]時(shí),0≤f(x)≤1;當(dāng)x∈(0,2)且x≠1時(shí),x(x-1)f′(x)<0.則方程f(x)=lg|x|根的個(gè)數(shù)為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)定義在R上的偶函數(shù)f(x)滿足f(x+3)+f(x)=0,若f(1)=2,則f(2012)=
          -2
          -2

          查看答案和解析>>

          同步練習(xí)冊(cè)答案