日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:的焦點在y軸上,且離心率為.過點M(0,3)的直線l與橢圓C相交于兩點A、B.
          (1)求橢圓C的方程;
          (2)設P為橢圓上一點,且滿足(O為坐標原點),當時,求實數(shù)λ的取值范圍.
          【答案】分析:(1)由題知a2=m,b2=1,∴c2=m-1,且離心率為,得m=4.由此能求出橢圓的方程.
          (2)當l的斜率不存在時,,不符合條件.設l的斜率為k,則l的方程為y=kx+3.設A(x1,y1),B(x2,y2),P(x,y),聯(lián)立l和橢圓的方程:,消去y,整理得(4+k2)x2+6kx+5=0,再由根的判別式和韋達定理進行求解.
          解答:解:(1)由題知a2=m,b2=1,∴c2=m-1
          ,解得m=4.
          ∴橢圓的方程為.(4分)
          (2)當l的斜率不存在時,,不符合條件.(5分)
          設l的斜率為k,則l的方程為y=kx+3.設A(x1,y1),B(x2,y2),P(x,y),聯(lián)立l和橢圓的方程:
          ,.消去y,整理得(4+k2)x2+6kx+5=0,
          ∴△=(6k)2-4×(4+k2)×5=16k2-80>0,解得k2>5.且,
          ==
          由已知有整理得13k4-88k2-128<0,解得,
          ∴5<k2<8.(9分)
          ,即(x1,y1)+(x2,y2)=λ(x,y),
          ∴x1+x2=λx,y1+y2=λy
          當λ=0時,,,顯然,上述方程無解.
          當λ≠0時,,
          ∵P(x,y)在橢圓上,
          ,
          化簡得.由5<k2<8,可得3<λ2<4,
          ∴λ∈(-2,-)∪(,2).即λ的取值范圍為(-2,-)∪(,2).(12分)
          點評:本題考查圓錐曲線和直線 的位置關系和應用,解題時要注意公式的靈活運用.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (本題滿分12分)已知橢圓C的焦點在y軸上,且離心率為.過點M(0,3)的直線l與橢圓C相交于兩點A、B.(1)求橢圓C的方程;(2)設P為橢圓上一點,且滿足O為坐標原點),當||<時,求實數(shù)λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (本題滿分12分)已知橢圓C的焦點在y軸上,且離心率為.過點M(0,3)的直線l與橢圓C相交于兩點AB.    (1)求橢圓C的方程;(2)設P為橢圓上一點,且滿足O為坐標原點),當||<時,求實數(shù)λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓C:數(shù)學公式的焦點在y軸上,且離心率為數(shù)學公式.過點M(0,3)的直線l與橢圓C相交于兩點A、B.
          (1)求橢圓C的方程;
          (2)設P為橢圓上一點,且滿足數(shù)學公式(O為坐標原點),當數(shù)學公式時,求實數(shù)λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:四川省綿陽市高中2010屆高三二診(文) 題型:解答題

           

          已知橢圓C的焦點在y軸上,且離心率為.過點(0,3)的直線l與橢圓C相交于兩點A、B

              (1)求橢圓C的方程;

          (2)若以AB為直徑的圓恰好經(jīng)過橢圓C的右頂點M,求此時l的方程.

           

           

           

           

           

           

          查看答案和解析>>

          同步練習冊答案