日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 10、設(shè)f(x)是R上的偶函數(shù),且在(0,+∞)上是減函數(shù),若x1<0且x1+x2>0,則( 。
          分析:先利用偶函數(shù)圖象的對稱性得出f(x)在(-∞,0)上是增函數(shù);然后再利用x1<0且x1+x2>0把自變量都轉(zhuǎn)化到區(qū)間(-∞,0)上即可求出答案.
          解答:解:f(x)是R上的偶函數(shù),且在(0,+∞)上是減函數(shù)
          故  在(-∞,0)上是增函數(shù)
          因?yàn)閤1<0且x1+x2>0,故0>x1>-x2
          所以有f(x1)>f(-x2).
          又因?yàn)閒(-x1)=f(x1),
          所以有f(-x1)>F(-x2).
          故選  A.
          點(diǎn)評:本題主要考查抽象函數(shù)的單調(diào)性和奇偶性.抽象函數(shù)是相對于給出具體解析式的函數(shù)來說的,它雖然沒有具體的表達(dá)式,但是有一定的對應(yīng)法則,滿足一定的性質(zhì),這種對應(yīng)法則及函數(shù)的相應(yīng)的性質(zhì)是解決問題的關(guān)鍵.抽象函數(shù)的抽象性賦予它豐富的內(nèi)涵和多變的思維價(jià)值,可以考查類比猜測,合情推理的探究能力和創(chuàng)新精神.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義域?yàn)镽的周期函數(shù),且f(x)最小正周期為2,且f(1+x)=f(1-x),當(dāng)-1≤x≤0時(shí),f(x)=-x.
          (1)判定f(x)的奇偶性;
          (2)試求出函數(shù)f(x)在[-1,2]上的表達(dá)式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•嘉定區(qū)三模)已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
          (1)如果實(shí)數(shù)a、b滿足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說明理由;
          (2)設(shè)a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
          (3)若a=2,b=
          12
          ,且k>0,問函數(shù)f(x)的圖象是不是軸對稱圖形?如果是,求出函數(shù)f(x)圖象的對稱軸;如果不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)的定義域是R,對于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)+f(n),
          (1)求證f(0)=0;
          (2)判斷f(x)在R上的奇偶性并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
          (1)如果實(shí)數(shù)a、b滿足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說明理由;
          (2)設(shè)a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
          (3)若a=2,數(shù)學(xué)公式,且k>0,問函數(shù)f(x)的圖象是不是軸對稱圖形?如果是,求出函數(shù)f(x)圖象的對稱軸;如果不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年上海市嘉定區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

          已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
          (1)如果實(shí)數(shù)a、b滿足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說明理由;
          (2)設(shè)a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
          (3)若a=2,,且k>0,問函數(shù)f(x)的圖象是不是軸對稱圖形?如果是,求出函數(shù)f(x)圖象的對稱軸;如果不是,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案