日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1.
          (1)求直線AE與平面CDE所成角的大小(用反三角函數(shù)值表示);
          (2)求多面體ABCDE的體積.

          【答案】分析:(1)要求線面角,必需找到該斜線與其射影的夾角,即要證明線面垂直,進(jìn)而得到垂線、斜線與斜線的射影,即可根據(jù)解三角形的有關(guān)知識解決問題.
          (2)結(jié)合(1)中的證明思路可得:線面垂直即CN⊥平面ABED,再利用棱錐的體積公式,進(jìn)而求出四棱錐的體積;
          解答:解:(1)取CD中點(diǎn)M,連接AM與EM (1分)
          ∵△ACD是正三角形,
          ∴AM⊥CD.(2分)
          ∵DE⊥平面ACD,
          ∴DE⊥AM.(3分)
          又CD∩DE=D,
          ∴AM⊥平面CDE.(4分)
          所以∠AEM就是AE與平面CDE所成角 (5分)
          根據(jù)題意可得:在△AME中,
          .(7分)
          所以直線AE與平面CDE所成角的大小為.(8分)
          (2)取AD中點(diǎn)N,同理(1)可證CN⊥平面ABED,且CN=.(10分)
          由題意可得:.(14分)
          點(diǎn)評:本題主要考查線面垂直的判定定理與幾何體體積的求解,以及線面角,而解決空間角的步驟是:找角,證角,求角三步,空間角是高考比考內(nèi)容.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知多面體ABCDEF中,AB⊥平面ACDF,DE⊥平面ACDF,△ACD是正三角形,且AD=DE=2,AB=AF=1,DF=
          3

          (Ⅰ)求證:DF⊥平面CDE;
          (Ⅱ)求多面體ABCDEF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知多面體ABCDE中,DE⊥平面DBC,DE∥AB,BD=CD=BC=AB=2,F(xiàn)為BC的中點(diǎn).
          (Ⅰ)求證:DF⊥平面ABC;
          (Ⅱ)求點(diǎn)D到平面EBC的距離的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1.
          (1)求直線AE與平面CDE所成角的大小(用反三角函數(shù)值表示);
          (2)求多面體ABCDE的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F(xiàn)為CE的中點(diǎn).
          ( I)求證:求證AF⊥CD;
          (II)求多面體ABCDE的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F(xiàn)為CD的中點(diǎn).
          (Ⅰ)求證:AF⊥平面CDE;
          (Ⅱ)求三棱錐A-BCE的體積.

          查看答案和解析>>

          同步練習(xí)冊答案