【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.若直線
的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
,將曲線
上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的一半,縱坐標(biāo)不變,然后再向右平移一個(gè)單位得到曲線
.
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)已知直線與曲線
交于
兩點(diǎn),點(diǎn)
,求
的值.
【答案】(Ⅰ);(Ⅱ)
【解析】試題分析:(Ⅰ)利用將曲線
的極坐標(biāo)方程為
化為直角坐標(biāo)方程。進(jìn)而可得結(jié)果;(Ⅱ)先將直線極坐標(biāo)方程化為直角坐標(biāo)方程,再寫出其參數(shù)方程,代入曲線
的直角坐標(biāo)方程后,利用直線參數(shù)方程的幾何意義求解即可.
試題解析:(Ⅰ)曲線的直角坐標(biāo)方程為
,
所以曲線的直角坐標(biāo)方程為
.
(Ⅱ)由直線的極坐標(biāo)方程
,得
,
所以直線的直角坐標(biāo)方程為
,又點(diǎn)
在直線
上,
所以直線的參數(shù)方程為:
,
代入的直角坐標(biāo)方程得
,
設(shè),
對(duì)應(yīng)的參數(shù)分別為
,
則,
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)與
有相同的極值點(diǎn).
(I)求函數(shù)的解析式;
(II)證明:不等式(其中e為自然對(duì)數(shù)的底數(shù));
(III)不等式對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓方程為
,雙曲線
的兩條漸近線分別為
,
,過(guò)橢圓
的右焦點(diǎn)作直線
,使
,又
與
交于點(diǎn)
,設(shè)直線
與橢圓
的兩個(gè)交點(diǎn)由上至下依次為
,
.
(1)若與
所成的銳角為
,且雙曲線的焦距為4,求橢圓
的方程;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣4|x|+1,若f(x)在區(qū)間[a,2a+1]上的最大值為1,則a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率是
,且過(guò)點(diǎn)
.直線
與橢圓
相交于
兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)求的面積的最大值;
(Ⅲ)設(shè)直線,
分別與
軸交于點(diǎn)
,
.判斷
,
大小關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
均為實(shí)數(shù),
為自然對(duì)數(shù)的底數(shù).
(I)求函數(shù)的極值;
(II)設(shè),若對(duì)任意的
,
恒成立,求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線的焦點(diǎn),斜率為
的直線交拋物線于
兩點(diǎn).
(1)求線段的長(zhǎng)度;
(2) 為坐標(biāo)原點(diǎn),
為拋物線上一點(diǎn),若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn)
,離心率為
,動(dòng)點(diǎn)
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求以為直徑且被直線
截得的弦長(zhǎng)為2的圓的方程;
(Ⅲ)設(shè)是橢圓的右焦點(diǎn),過(guò)點(diǎn)
作
的垂線與以
為直徑的圓交于點(diǎn)
,證明:線段
的長(zhǎng)為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線,
.
(1)當(dāng)時(shí),直線
過(guò)
與
的交點(diǎn),且它在兩坐標(biāo)軸上的截距相反,求直線
的方程;
(2)若坐標(biāo)原點(diǎn)到直線
的距離為
,判斷
與
的位置關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com