日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}滿足a1=2,數(shù)學(xué)公式
          (I)求數(shù)列{an}的通項(xiàng)公式;
          (II)設(shè)bn=(An2+Bn+C)•2n,試推斷是否存在常數(shù)A,B,C,使對一切n∈N+都有an=bn+1-bn成立?若存在,求出A,B,C的值,若不存在,說明理由.

          解:(I)由已知,得
          ,(3分)
          所以數(shù)列{}是公比為2的等比數(shù)列,首項(xiàng)為a1=2,
          故an=2n•n2. (6分)
          也可以用累積法;
          (II)因?yàn)閎n+1-bn=[An2+(4A+B)n+2A+2B+C]•2n,
          若an=bn+1-bn恒成立,則An2+(4A+B)n+2A+2B+C=n2恒成立,
          所以,(9分)
          解出A=1,B=-4,C=6.
          故存在常數(shù)A,B,C滿足條件. (12分)
          分析:(I)由已知,得,所以數(shù)列{}是公比為2的等比數(shù)列,首項(xiàng)為a1=2,由此可知an=2n•n2
          (II)由題題意知若an=bn+1-bn恒成立,則An2+(4A+B)n+2A+2B+C=n2恒成立,由此能解出A=1,B=-4,C=6.故存在常數(shù)A,B,C滿足條件.
          點(diǎn)評:本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足:a1=1且an+1=
          3+4an
          12-4an
          , n∈N*

          (1)若數(shù)列{bn}滿足:bn=
          1
          an-
          1
          2
          (n∈N*)
          ,試證明數(shù)列bn-1是等比數(shù)列;
          (2)求數(shù)列{anbn}的前n項(xiàng)和Sn
          (3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足
          1
          2
          a1+
          1
          22
          a2+
          1
          23
          a3+…+
          1
          2n
          an=2n+1
          則{an}的通項(xiàng)公式
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足:a1=
          3
          2
          ,且an=
          3nan-1
          2an-1+n-1
          (n≥2,n∈N*).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
          (1)若a1=
          54
          ,求an;
          (2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
          2n-1
          2n-1

          查看答案和解析>>

          同步練習(xí)冊答案