日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在直三棱柱ABC—A1B1C1中,AB=BC,D、E分別為BB1、AC1的中點.

          (1)證明:ED為異面直線BB1與AC1的公垂線;

          (2)設(shè)AA1=AC=AB,求二面角A1—AD—C1的大小.

          (1)證明:如圖,設(shè)O為AC中點,連結(jié)EO、BO,則EOC1C.又C1CB1B,∴EODB,EOBD為平行四邊形,ED∥OB.

          ∵AB=BC,∴BO⊥AC.

              又平面ABC⊥平面ACC1A1,BO面ABC,

              故BO⊥平面ACC1A1,

          ∴ED⊥平面ACC1A1,ED⊥AC1,ED⊥CC1.

          ∴ED⊥BB1,ED為異面直線AC1與BB1的公垂線.

          (2)解:連結(jié)A1E.由AA1=AC=AB可知,A1ACC1為正方形,∴A1E⊥AC1.

              又由ED⊥平面A1ACC1和ED平面ADC1知平面ADC1⊥平面A1ACC1,

          ∴A1E⊥平面ADC1.作EF⊥AD,垂足為F,連結(jié)A1F

              則A1F⊥AD,∠A1FE為二面角A1—AD—C1的平面角.

              不妨設(shè)AA1=2,

              則AC=2,AB=,ED=OB=1,EF=,tanA1FE=,

          ∴∠A1FE=60°.

          ∴二面角A1—AD—C1為60°.


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值; 

          (Ⅲ)求點C到平面B1DP的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

           

           (本小題共l2分)

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

          P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;   

          (Ⅲ)求點C到平面B1DP的距離.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題

           (本小題共l2分)

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

          P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;   

          (Ⅲ)求點C到平面B1DP的距離.

           

           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

          如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA。
          (I)求證:CD=C1D;
          (II)求二面角A-A1D-B的平面角的余弦值;
          (Ⅲ)求點C到平面B1DP的距離

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;

          (Ⅲ)求點C到平面B1DP的距離.

          查看答案和解析>>

          同步練習(xí)冊答案