【題目】已知橢圓過點(diǎn)
,
分別為橢圓C的左、右焦點(diǎn)且
.
(1)求橢圓C的方程;
(2)過P點(diǎn)的直線與橢圓C有且只有一個(gè)公共點(diǎn),直線
平行于OP(O為原點(diǎn)),且與橢圓C交于兩點(diǎn)A、B,與直線
交于點(diǎn)M(M介于A、B兩點(diǎn)之間).
(i)當(dāng)面積最大時(shí),求
的方程;
(ii)求證:,并判斷
,
的斜率是否可以按某種順序構(gòu)成等比數(shù)列.
【答案】(1);(2)(i)
;(ii)證明見解析,不可能構(gòu)成等比數(shù)列.
【解析】
(1)設(shè),
.求出
的坐標(biāo),根據(jù)
,求出
.把點(diǎn)
代入橢圓方程,結(jié)合
,求出
,即得橢圓C的方程;
(2)(i)設(shè)方程為
,
.把直線
的方程代入橢圓方程,由韋達(dá)定理、弦長公式求出
.由點(diǎn)到直線的距離公式求出點(diǎn)P到
的距離
,則
,根據(jù)基本不等式求面積的最大值,即求
的方程;(ii)要證結(jié)論成立,只須證明
,即證直線
為
的平分線,轉(zhuǎn)化成證明
.
又與C有一個(gè)公共點(diǎn),即
為橢圓的切線,可求
,又
.由題意
,
,
,
四個(gè)數(shù)按某種順序成等比數(shù)列,推出矛盾,故不可能構(gòu)成等比數(shù)列.
(1)設(shè),
,
則,
.
,
.
又在橢圓上,故
,
又,解得
,
,
故所求方程為.
(2)(i)由于,
設(shè)方程為
,
.
由,消y整理得
,
,
則
.
又點(diǎn)P到的距離
,
.
當(dāng)且僅當(dāng),
,即
時(shí),等號成立.
故直線AB的方程為:.
(ⅱ)要證結(jié)論成立,只須證明:,
由角平分線性質(zhì)即證:直線為
的平分線,
轉(zhuǎn)化成證明:.
因?yàn)?/span>
因此結(jié)論成立.
又與C有一個(gè)公共點(diǎn),即
為橢圓的切線,
由得
令,
,
則,
所以,所以
,
故所研究的4條直線的斜率分別為,
,
,
,
若這四個(gè)數(shù)成等比數(shù)列,且其公比記為q,
則應(yīng)有或
,或
.
因?yàn)?/span>不成立,所以
,
而當(dāng)時(shí),
,
,
此時(shí)直線PB與重合,不合題意,
故,
,PA,PB的斜率無論怎樣排序都不可能構(gòu)成等比數(shù)列.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部門在上班高峰時(shí)段對甲、乙兩座地鐵站各隨機(jī)抽取了50名乘客,統(tǒng)計(jì)其乘車等待時(shí)間(指乘客從進(jìn)站口到乘上車的時(shí)間,單位:分鐘)將統(tǒng)計(jì)數(shù)據(jù)按,
,
,…,
分組,制成頻率分布直方圖如圖所示:
(1)求a的值;
(2)記A表示事件“在上班高峰時(shí)段某乘客在甲站乘車等待時(shí)間少于20分鐘”試估計(jì)A的概率;
(3)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間左端點(diǎn)值來估計(jì),記在上班高峰時(shí)段甲、乙兩站各抽取的50名乘客乘車的平均等待時(shí)間分別為,求
的值,并直接寫出
與
的大小關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蜂巢是由工蜂分泌蜂蠟建成的.從正面看,蜂巢口是由許多正六邊形的中空柱狀體連接而成,中空柱狀體的底部是由三個(gè)全等的菱形面構(gòu)成.如圖,在正六棱柱的三個(gè)頂點(diǎn)
處分別用平面
,平面
,平面
截掉三個(gè)相等的三棱錐
,
,
,平面
,平面
,平面
交于點(diǎn)
,就形成了蜂巢的結(jié)構(gòu),如下圖(4)所示,
瑞士數(shù)學(xué)家克尼格利用微積分的方法證明了蜂巢的這種結(jié)構(gòu)是在相同容積下所用材料最省的,英國數(shù)學(xué)家麥克勞林通過計(jì)算得到菱形的一個(gè)內(nèi)角為,即
.以下三個(gè)結(jié)論①
;②
;③
四點(diǎn)共面,正確命題的個(gè)數(shù)為______個(gè);若
,
,
,則此蜂巢的表面積為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(1)若a=1,且f(x)≥m在(0,+∞)恒成立,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)時(shí),若x=0不是f(x)的極值點(diǎn),求實(shí)數(shù)a的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》是中國古代重要的數(shù)學(xué)著作,其記載的“日月歷法”曰:“陰陽之?dāng)?shù),日月之法,十九歲為一章,四章為一部,部七十六歲,二十部為一遂,遂千百五二十歲,….生數(shù)皆終,萬物復(fù)蘇,天以更元作紀(jì)歷”,某老年公寓住有20位老人,他們的年齡(都為正整數(shù))之和恰好為一遂,其中年長者已是奔百之齡(年齡介于90至100),其余19人的年齡依次相差一歲,則年長者的年齡為( )
A.94B.95C.96D.98
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】眾所周知的“太極圖”,其形狀如對稱的陰陽兩魚互抱在一起,也被稱為“陰陽魚太極圖”.如圖是放在平面直角坐標(biāo)系中的“太極圖”.整個(gè)圖形是一個(gè)圓形.其中黑色陰影區(qū)域在y軸右側(cè)部分的邊界為一個(gè)半圓,給出以下命題:
①在太極圖中隨機(jī)取一點(diǎn),此點(diǎn)取自黑色陰影部分的概率是
②當(dāng)時(shí),直線y=ax+2a與白色部分有公共點(diǎn);
③黑色陰影部分(包括黑白交界處)中一點(diǎn)(x,y),則x+y的最大值為2;
④設(shè)點(diǎn)P(﹣2,b),點(diǎn)Q在此太極圖上,使得∠OPQ=45°,b的范圍是[﹣2,2].
其中所有正確結(jié)論的序號是( )
A.①④B.①③C.②④D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(0,2),B為拋物線x2=2y﹣2上任意一點(diǎn),且B為AC的中點(diǎn),設(shè)動(dòng)點(diǎn)C的軌跡為曲線E.
(1)求曲線E的方程;
(2)是否存在斜率為1的直線l交曲線E于M、N兩點(diǎn),使得△MAN為以MN為底邊的等腰三角形?若存在,請求出l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),直線
,過動(dòng)點(diǎn)
作
于點(diǎn)
,
的平分線交
軸于點(diǎn)
,且
,記動(dòng)點(diǎn)
的軌跡為曲線
.
(1)求曲線的方程;
(2)過點(diǎn)作兩條直線,分別交曲線
于
兩點(diǎn)(異于
點(diǎn)).當(dāng)直線
的斜率之和為2時(shí),直線
是否恒過定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是
上的偶函數(shù),且
,若
在
上單調(diào)遞減,則函數(shù)
在
上是( )
A. 增函數(shù) B. 減函數(shù) C. 先增后減的函數(shù) D. 先減后增的函數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com