日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿(mǎn)分14分)

          已知數(shù)列滿(mǎn)足,數(shù)列滿(mǎn)足.

          (1)求證:數(shù)列是等差數(shù)列;

          (2)設(shè),求滿(mǎn)足不等式的所有正整數(shù)的值.

           

          【答案】

          (1)證明:由,計(jì)算中,得

          即得。(2)滿(mǎn)足不等式的所有正整數(shù)的值為2,3,4。

          【解析】

          試題分析:(1)證明:由,則

          代入中,得,

          即得。所以數(shù)列是等差數(shù)列!6分

          (2)解:因?yàn)閿?shù)列是首項(xiàng)為,公差為等差數(shù)列,

          ,則!8分

          從而有,

          !11分

          ,由,得。

          ,得。

          故滿(mǎn)足不等式的所有正整數(shù)的值為2,3,4!14分

          考點(diǎn):本題主要考查等差數(shù)列、等比數(shù)列的的基礎(chǔ)知識(shí),“公式法”求和,放縮法證明不等式。

          點(diǎn)評(píng):中檔題,本題綜合考查等差數(shù)列、等比數(shù)列的基礎(chǔ)知識(shí),本解答從確定通項(xiàng)公式入手,明確了所研究數(shù)列的特征!肮椒ā鼻髷(shù)列的前n項(xiàng)和是高考常?嫉綌(shù)列求和方法。不等式的證明應(yīng)用了“放縮法”。

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本題滿(mǎn)分14分
          A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線(xiàn)l 的極坐標(biāo)方程為θ=
          π
          3
          (ρ∈R ),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線(xiàn)C的參數(shù)方程為
          x=2cosα
          y=1+cos2α
          (α 參數(shù)).求直線(xiàn)l 和曲線(xiàn)C的交點(diǎn)P的直角坐標(biāo).
          B.選修4-5:不等式選講
          設(shè)實(shí)數(shù)x,y,z 滿(mǎn)足x+y+2z=6,求x2+y2+z2 的最小值,并求此時(shí)x,y,z 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本題滿(mǎn)分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABEAEEBBC=2,上的點(diǎn),且BF⊥平面ACE

          (1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線(xiàn)段AB上,且滿(mǎn)足AM=2MB,試在線(xiàn)段CE上確定一點(diǎn)N,使得MN∥平面DAE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

          (本題滿(mǎn)分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

          (Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值

          (Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

          (本題滿(mǎn)分14分)

          已知點(diǎn)是⊙上的任意一點(diǎn),過(guò)垂直軸于,動(dòng)點(diǎn)滿(mǎn)足。

          (1)求動(dòng)點(diǎn)的軌跡方程; 

          (2)已知點(diǎn),在動(dòng)點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn),使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線(xiàn)的方程,若不存在,請(qǐng)說(shuō)明理由。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

          (本題滿(mǎn)分14分)已知函數(shù).

          (1)求函數(shù)的定義域;

          (2)判斷的奇偶性;

          (3)方程是否有根?如果有根,請(qǐng)求出一個(gè)長(zhǎng)度為的區(qū)間,使

          ;如果沒(méi)有,請(qǐng)說(shuō)明理由?(注:區(qū)間的長(zhǎng)度為).

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案