日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}是首項為a1的等比數(shù)列,則能保證4a1,a5,-2a3成等差數(shù)列的公比q的個數(shù)為( )
          A.0
          B.1
          C.2
          D.3
          【答案】分析:由已知4a1,a5,-2a3成等差數(shù)列可得2a5=4a1+(-2a3),結(jié)合等比數(shù)列的通項公式可求公比q的值.
          解答:解:∵4a1,a5,-2a3成等差數(shù)列,
          ∴2a5=4a1+(-2a3).
          設(shè)數(shù)列{an}的公比為q,則a5=a1q4,a3=a1q2
          ∴2a1q4=4a1-2a1q2.∵a1≠0,∴q4+q2-2=0,
          ∴q2=1或q2=-2(舍去),∴q=1或q=-1.
          故選:C
          點評:本題主要考查了等比數(shù)列的性質(zhì)、通項公式及等差數(shù)列的性質(zhì).屬基礎(chǔ)題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知數(shù)列{an}是首項為3,公差為2的等差數(shù)列,其前n項和為Sn,數(shù)列{bn}為等比數(shù)列,且b1=1,bn>0,數(shù)列{ban}是公比為64的等比數(shù)列.
          (Ⅰ)求{an},{bn}的通項公式;
          (Ⅱ)求證:
          1
          S1
          +
          1
          S2
          +…+
          1
          Sn
          3
          4

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知數(shù)列{an}是首項a1=
          1
          4
          的等比數(shù)列,其前n項和Sn中S3,S4,S2成等差數(shù)列,
          (1)求數(shù)列{an}的通項公式;
          (2)設(shè)bn=log
          1
          2
          |an|,若Tn=
          1
          b1b2
          +
          1
          b2b3
          +…+
          1
          bnbn+1
          ,求證:
          1
          6
          ≤Tn
          1
          2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知數(shù)列{an}是首項為1的等差數(shù)列,且公差不為零,而等比數(shù)列{bn}的前三項分別是a1,a2,a6
          (I)求數(shù)列{an}的通項公式an;
          (II)若b1+b2+…bk=85,求正整數(shù)k的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知數(shù)列{an}是首項為1,公差為2的等差數(shù)列,又數(shù)列{bn}的前n項和Sn=nan
          (Ⅰ)求數(shù)列{bn}的通項公式;
          (Ⅱ)若cn=
          1bn(2an+3)
          ,求數(shù)列{cn}的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知數(shù)列{an}是首項a1=a,公差為2的等差數(shù)列,數(shù)列{bn}滿足2bn=(n+1)an
          (1)若a1、a3、a4成等比數(shù)列,求數(shù)列{an}的通項公式;
          (2)若對任意n∈N*都有bn≥b5成立,求實數(shù)a的取值范圍;
          (3)數(shù)列{cn}滿足 cn+1-cn=(
          12
          )n(n∈N*)
          ,其中c1=1,f(n)=bn+cn,當a=-20時,求f(n)的最小值(n∈N*).

          查看答案和解析>>

          同步練習冊答案