日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          已知函數滿足,且在區(qū)間和區(qū)間上分別單調。

          (Ⅰ)求解析式;

          (Ⅱ)若函數的值。

           

          【答案】

          解:(Ⅰ)∵,

          。 ①  1分

          又∵在區(qū)間和區(qū)間上分別單調,

          的對稱軸為,

          。②

          由②得,。  2分

          代入①得,

          。3分

          (Ⅱ)∵

          4分

          ,5分

          。6分

          【解析】本試題主要是考查了函數的單調性質和函數的求值的運用。

          (1)根據已知f(-1)=-5,那么得到a.b的關系式,并結合對稱性可知參數啊,b的值。

          (2)由函數為分段函數可知函數的對應的自變量的值。

           

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          (2011•昌平區(qū)二模)已知函數f(x)=x2-ax+a(x∈R),在定義域內有且只有一個零點,存在0<x1<x2,使得不等式f(x1)>f(x2)成立.若n∈N*,f(n)是數列{an}的前n項和.
          (I)求數列{an}的通項公式;
          (II)設各項均不為零的數列{cn}中,所有滿足ck•ck+1<0的正整數k的個數稱為這個數列{cn}的變號數,令cn=1-
          4
          an
          (n為正整數),求數列{cn}的變號數;
          (Ⅲ)設Tn=
          1
          an+6
          (n≥2且n∈N*),使不等式
          7
          m
          30
          ≤(1+T2)•(1+T3)…(1+Tn)•
          1
          2n+3
          恒成立,求正整數m的最大值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2006•松江區(qū)模擬)(文)已知函數f(x)=ax2-2
          4+2b-b2
          x
          g(x)=-
          1-(x-a)2
          ,(a,b∈R)
          (Ⅰ)當b=0時,若f(x)在[2,+∞)上單調遞增,求a的取值范圍;
          (Ⅱ)求滿足下列條件的所有實數對(a,b):當a是整數時,存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
          (Ⅲ)對滿足(Ⅱ)的條件的一個實數對(a,b),試構造一個定義在D={x|x>-2,且x≠2k-2,k∈N}上的函數h(x),使當x∈(-2,0)時,h(x)=f(x),當x∈D時,h(x)取得最大值的自變量的值構成以x0為首項的等差數列.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2008•奉賢區(qū)一模)我們將具有下列性質的所有函數組成集合M:函數y=f(x)(x∈D),對任意x,y,
          x+y
          2
          ∈D
          均滿足f(
          x+y
          2
          )≥
          1
          2
          [f(x)+f(y)]
          ,當且僅當x=y時等號成立.
          (1)若定義在(0,+∞)上的函數f(x)∈M,試比較f(3)+f(5)與2f(4)大小.
          (2)設函數g(x)=-x2,求證:g(x)∈M.
          (3)已知函數f(x)=log2x∈M.試利用此結論解決下列問題:若實數m、n滿足2m+2n=1,求m+n的最大值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2012•松江區(qū)三模)已知函數f(x)=x2+3x,數列{an}的前n項和為Sn,且對一切正整數n,點Pn(n,Sn)都在函數f(x)的圖象上.
          (1)求數列{an}的通項公式;
          (2)設A={x|x=an,n∈N*},B={x|x=2(an-1),n∈N*},等差數列{bn}的任一項bn∈A∩B,其中b1是A∩B中最的小數,且88<b8<93,求{bn}的通項公式;
          (3)設數列{cn}滿足cn=
          nan-1
          ,是否存在正整數p,q(1<p<q),使得c1,cp,cq成等比數列?若存在,求出所有的p,q的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          已知函數f(x)=alnx-x2
          (1)當a=2時,求函數y=f(x)在[
          12
          ,2]
          上的最大值;
          (2)令g(x)=f(x)+ax,若y=g(x)在區(qū)讓(0,3)上不單調,求a的取值范圍;
          (3)當a=2時,函數h(x)=f(x)-mx的圖象與x軸交于兩點A(x1,0),B(x2,0),且0<x1<x2,又y=h′(x)是y=h(x)的導函數.若正常數α,β滿足條件α+β=1,β≥α.證明h′(αx1+βx2)<0.

          查看答案和解析>>

          同步練習冊答案