日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知邊長(zhǎng)為的正的頂點(diǎn)在平面內(nèi),頂點(diǎn)在平面外的同一側(cè),點(diǎn),分別為在平面內(nèi)的投影,設(shè),直線與平面所成的角為.若是以角為直角的直角三角形,則的最小值為__________

          【答案】

          【解析】分析:由題意找出線面角,設(shè)BB′=a,CC′=b,可得ab=2,然后由a的變化得到A′B′的變化范圍,從而求得tanφ的范圍.

          詳解:如圖,

          由CC′⊥α,A′B′α,得A′B′⊥CC′,

          又A′B′A′C′,且A′C′∩CC′=C′,

          ∴A′B′⊥面A′C′C,則φ=∠B′CA′,

          設(shè)BB′=a,CC′=b,則A′B′2=4﹣a2,A′C′2=4﹣b2,

          設(shè)B′C′=c,

          則有,整理得:ab=2.

          ∵|BB′|≤|CC′|,∴a≤b,

          tanφ=,

          在三角形BB′A′中,斜邊A′B為定值2,

          當(dāng)a最大為時(shí),A′B′取最小值,tanφ的最小值為

          當(dāng)a減小時(shí),tanφ增大,

          若a1,則b2,在Rt△A′CC′中出現(xiàn)直角邊大于等于斜邊,矛盾,

          ∴a>1,此時(shí)A′B′,即tanφ

          ∴tanφ的范圍為的最小值為

          故答案為:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓C: 過(guò)點(diǎn) ,左右焦點(diǎn)為F1(﹣c,0),F(xiàn)2(c,0),且橢圓C關(guān)于直線x=c對(duì)稱的圖形過(guò)坐標(biāo)原點(diǎn).

          (I)求橢圓C方程;
          (II)圓D: 與橢圓C交于A,B兩點(diǎn),R為線段AB上任一點(diǎn),直線F1R交橢圓C于P,Q兩點(diǎn),若AB為圓D的直徑,且直線F1R的斜率大于1,求|PF1||QF1|的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】將函數(shù)f(x)=2cos2x的圖象向右平移 個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(
          A.[ ]
          B.[ , ]
          C.[ ]
          D.[ , ]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的離心率為,右焦點(diǎn)為。斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為

          1)求橢圓的方程;

          2)求的面積。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),在區(qū)間內(nèi)任取兩個(gè)實(shí)數(shù),,且,若不等式恒成立,則實(shí)數(shù)的取值范圍是

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知等腰直角三角形的斜邊所在直線方程為,其中點(diǎn)在點(diǎn)上方,直角頂點(diǎn)的坐標(biāo)為

          (1)求邊上的高線所在直線的方程;

          (2)求等腰直角三角形的外接圓的標(biāo)準(zhǔn)方程;

          (3)分別求兩直角邊,所在直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在道路邊安裝路燈,路面,燈柱高14,燈桿與地面所成角為30°.路燈采用錐形燈罩,燈罩軸線與燈桿垂直,軸線,燈桿都在燈柱和路面寬線確定的平面內(nèi).

          (1)當(dāng)燈桿長(zhǎng)度為多少時(shí),燈罩軸線正好通過(guò)路面的中線?

          (2)如果燈罩軸線AC正好通過(guò)路面的中線,此時(shí)有一高2.5 的警示牌直立在處,求警示牌在該路燈燈光下的影子長(zhǎng)度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某制造商月生產(chǎn)了一批乒乓球,隨機(jī)抽樣個(gè)進(jìn)行檢查,測(cè)得每個(gè)球的直徑(單位:mm),將數(shù)據(jù)分組如下表

          分組

          頻數(shù)

          頻率

          10

          20

          50

          20

          合計(jì)

          100

          (1)請(qǐng)?jiān)谏媳碇醒a(bǔ)充完成頻率分布表(結(jié)果保留兩位小數(shù)),并在上圖中畫出頻率分布直方圖;

          (2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如區(qū)間的中點(diǎn)值是)作為代表.據(jù)此估計(jì)這批乒乓球直徑的平均值(結(jié)果保留兩位小數(shù)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】△ABC中,角A,BC對(duì)應(yīng)的邊分別是a,bc,已知cos2A﹣3cosB+C=1

          1)求角A的大;

          2)若△ABC的面積S=5b=5,求sinBsinC的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案