日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且Snn5an85,nN*

          1)證明:{an1}是等比數(shù)列;

          2)求數(shù)列{Sn}的通項(xiàng)公式.請(qǐng)指出n為何值時(shí),Sn取得最小值,并說明理由?(參考數(shù)據(jù)15=﹣14.85

          【答案】(1)見解析;(2)Snn+75n190n15時(shí),Sn取得最小值,見解析

          【解析】

          1)利用已知得到an1an11),即得{an1}是等比數(shù)列;(2)先求出,再求出,再分析得到當(dāng)n15時(shí),an0;當(dāng)n16時(shí),an0.即得解.

          1)當(dāng)n1時(shí),a1S115a185,解得a1=﹣14,則a11=﹣15

          ∵當(dāng)n2時(shí),Sn1=(n1)﹣5an185,

          anSnSn115an+5an1,∴6an5an1+1,

          an1an11),∴{an1}是首項(xiàng)為﹣15,公比為的等比數(shù)列.

          2)∵an1=﹣15n1,所以.

          Snn5[115n1]85n+75n190

          an115n10,即15n11,解得n+115.85

          ∴當(dāng)n15時(shí),an0;當(dāng)n16時(shí),an0

          n15時(shí),Sn取得最小值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P-ABCD中,PA⊥平面ABCD,EBD的中點(diǎn),GPD的中點(diǎn),,,,連接CE并延長(zhǎng)交ADF.

          1)求證:AD⊥平面CFG;

          2)求平面BCP與平面DCP的夾角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】考察正方體6個(gè)面的中心,甲從這6個(gè)點(diǎn)中任意選兩個(gè)點(diǎn)連成直線,乙也從這6個(gè)點(diǎn)中任意選兩個(gè)點(diǎn)連成直線,則所得的兩條直線相互平行但不重合的概率等于( .

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分10)

          某單位建造一間地面面積為12m2的背面靠墻的矩形小房,由于地理位置的限制,房子側(cè)面的長(zhǎng)度x不得超過米,房屋正面的造價(jià)為400/m2,房屋側(cè)面的造價(jià)為150/m2,屋頂和地面的造價(jià)費(fèi)用合計(jì)為5800元,如果墻高為3m,且不計(jì)房屋背面的費(fèi)用.

          1)把房屋總造價(jià)表示成的函數(shù),并寫出該函數(shù)的定義域.

          2)當(dāng)側(cè)面的長(zhǎng)度為多少時(shí),總造價(jià)最底?最低總造價(jià)是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知0m2,動(dòng)點(diǎn)M到兩定點(diǎn)F1(﹣m,0),F2m,0)的距離之和為4,設(shè)點(diǎn)M的軌跡為曲線C,若曲線C過點(diǎn).

          1)求m的值以及曲線C的方程;

          2)過定點(diǎn)且斜率不為零的直線l與曲線C交于A,B兩點(diǎn).證明:以AB為直徑的圓過曲線C的右頂點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線上各點(diǎn)縱坐標(biāo)伸長(zhǎng)到原來的2倍(橫坐標(biāo)不變)得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

          1)寫出的極坐標(biāo)方程與直線的直角坐標(biāo)方程;

          2)曲線上是否存在不同的兩點(diǎn)(以上兩點(diǎn)坐標(biāo)均為極坐標(biāo),,),使點(diǎn)、的距離都為3?若存在,求的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定點(diǎn)S( -2,0) ,T(2,0),動(dòng)點(diǎn)P為平面上一個(gè)動(dòng)點(diǎn),且直線SP、TP的斜率之積為.

          1)求動(dòng)點(diǎn)P的軌跡E的方程;

          2)設(shè)點(diǎn)B為軌跡Ey軸正半軸的交點(diǎn),是否存在直線l,使得l交軌跡EM,N兩點(diǎn),且F(1,0)恰是△BMN的垂心?若存在,求l的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且Snnn+2)(nN*).

          1)求數(shù)列{an}的通項(xiàng)公式;

          2)設(shè)bn,求數(shù)列{bn}的前n項(xiàng)和Tn.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】

          已知拋物線的焦點(diǎn)為,上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)的直線于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)的橫坐標(biāo)為時(shí),為正三角形.

          )求的方程;

          )若直線,且有且只有一個(gè)公共點(diǎn),

          )證明直線過定點(diǎn),并求出定點(diǎn)坐標(biāo);

          的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案