日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的中心在坐標原點,焦點在軸上,左頂點為,左焦點為,點在橢圓上,直線與橢圓交于, 兩點,直線, 分別與軸交于點

          (Ⅰ)求橢圓的方程;

          (Ⅱ)以為直徑的圓是否經(jīng)過定點?若經(jīng)過,求出定點的坐標;若不經(jīng)過,請說明理由.

          【答案】;()經(jīng)過兩定點, .

          【解析】試題分析:()橢圓的左焦點為,所以.由點在橢圓上,得,進而解出得到橢圓的方程;()直線與橢圓聯(lián)立,解得的坐標(用表示),設出, 的方程,解出的坐標,圓方程用表示,最后可求得為直徑的圓經(jīng)過兩定點.

          試題解析:() 設橢圓的方程為,

          因為橢圓的左焦點為,所以

          因為點在橢圓上,所以

          ①②解得, ,

          所以橢圓的方程為

          )因為橢圓的左頂點為,則點的坐標為

          因為直線與橢圓交于兩點,

          設點(不妨設),則點

          聯(lián)立方程組消去

          所以,則

          所以直線的方程為

          因為直線, 分別與軸交于點,

          ,即點

          同理可得點

          所以

          的中點為,則點的坐標為

          則以為直徑的圓的方程為 ,

          ,得,即

          故以為直徑的圓經(jīng)過兩定點,

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知 ,一直線過點 ,

          ①若直線在兩坐標軸上截距之和為12,求直線的方程;

          ②若直線 軸正半軸交于 兩點,當面積為 時求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,四棱錐中,底面是邊長為2的正方形, ,且, 中點.

          (Ⅰ)求證: 平面;  

          求二面角的平面角的余弦.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系中,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,

          已知某圓的極坐標方程為:

          (1)將極坐標方程化為直角坐標方程;

          (2)若點 在該圓上,求的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】選修4-4:坐標系與參數(shù)方程

          在平面直角坐標系中,已知點,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,點的極坐標為,直線的極坐標方程為,且過點;過點與直線平行的直線為, 與曲線相交于兩點.

          (1)求曲線上的點到直線距離的最小值;

          (2)求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知向量 =(m,cos2x), =(sin2x,n),設函數(shù)f(x)= ,且y=f(x)的圖象過點( , )和點( ,﹣2). (Ⅰ)求m,n的值;
          (Ⅱ)將y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數(shù)y=g(x)的圖象.若y=g(x)的圖象上各最高點到點(0,3)的距離的最小值為1,求y=g(x)的單調增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示,在中, 的中點為,且,點的延長線上,且.固定邊,在平面內(nèi)移動頂點,使得圓與邊,邊的延長線相切,并始終與的延長線相切于點,記頂點的軌跡為曲線.以所在直線為軸, 為坐標原點如圖所示建立平面直角坐標系.

          (Ⅰ)求曲線的方程;

          (Ⅱ)設動直線交曲線兩點,且以為直徑的圓經(jīng)過點,求面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)是定義在上的奇函數(shù),且當時, ,則對任意,函數(shù)的零點個數(shù)至多有( )

          A. 3個 B. 4個 C. 6個 D. 9個

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設A,B,C,D為平面內(nèi)的四點,且A(1,3),B(2,﹣2),C(4,1).
          (1)若 = ,求D點的坐標;
          (2)設向量 = , = ,若k +3 平行,求實數(shù)k的值.

          查看答案和解析>>

          同步練習冊答案