日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在長方形ABEF中,D,C分別是AF和BE的中點,M和N分別是AB和AC的中點,AF=2AB=2a,將平面DCEF沿著DC折起,使角∠ADF=90°,G是DF上一動點,求證:
          (1)GN⊥AC
          (2)當FG=GD時,在棱AD上確定一點P,使得GP∥平面FMC.并給出證明.
          分析:(1)連接BD,結(jié)合正方形的幾何特征有線面垂直的判定及性質(zhì)定理,易得AC⊥BD且AC⊥FD,由線面垂直的判定定理可得AC⊥平面BDF,進而根據(jù)線面垂直的性質(zhì)可得GN⊥AC;(2)連接正方形CDFE的對角線DE、CF交于O點,連接OG,GA,OM,由三角形中位線定理及M是AB的中點可得則AM∥OG且AM=OG,進而得到AG∥OM,由線面平行的判定定理,得到:AG∥平面FMC.
          解答:證明:(1)連接BD,如圖所示:
          ∵D,C分別是AF和BE的中點,AF=2AB=2a,
          ∴四邊形ABCD為邊長為a的正方形
          又∵N為AC的中點,故N為正方形對角線AC與BD的交點
          ∴AC⊥BD
          ∵∠ADF=90°
          ∴FD⊥AD,
          又∵FD⊥DC,AD∩CD=D
          ∴FD⊥平面ABCD
          又∵AC?平面ABCD
          ∴AC⊥FD
          ∵BD∩FD=D
          ∴AC⊥平面BDF
          ∵G∈FD,
          ∴GN?平面BDF
          ∴GN⊥AC
          (2)當P點與A點重合時,GP∥平面FMC,理由如下:
          ∵FG=GD時,G為FD的中點
          連接正方形CDFE的對角線DE、CF交于O點,連接OG,GP,OM
          則OG∥DC,且OG=
          1
          2
          DC,
          由PM∥DC,且PM=
          1
          2
          DC,
          則PM∥OG且PM=OG
          則四邊形PMOG為平行四邊形
          則PG∥OM,
          又∵PG?平面FMC,OM?平面FMC,
          ∴PG∥平面FMC
          點評:本題考查的知識點是直線與平面垂直的性質(zhì),直線與平面平行的判定,其中熟練掌握空間直線與平面平行及垂直的判定定理及性質(zhì)定理,是解答本題的關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源:2010-2011學年廣東省高州市高三上學期16周抽考數(shù)學文卷 題型:解答題

          (本小題共14分)

          在長方形ABEF中,D,C分別是AF和BE的中點,M和N分別是AB和AC的中點,AF=2AB=2a,將平面DCEF沿著DC折起,使角,G是DF上一動點

          求證:

          (1)GN垂直AC

          (2)當FG=GD時,求證:GA||平面FMC。

           

           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          在長方形ABEF中,D,C分別是AF和BE的中點,M和N分別是AB和AC的中點,AF=2AB=2a,將平面DCEF沿著DC折起,使角∠ADF=90°,G是DF上一動點,求證:
          (1)GN⊥AC
          (2)當FG=GD時,在棱AD上確定一點P,使得GP∥平面FMC.并給出證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2009-2010學年廣東省廣州市重點中學高三(上)月考數(shù)學試卷(理科)(解析版) 題型:解答題

          在長方形ABEF中,D,C分別是AF和BE的中點,M和N分別是AB和AC的中點,AF=2AB=2a,將平面DCEF沿著DC折起,使角∠ADF=90°,G是DF上一動點,求證:
          (1)GN⊥AC
          (2)當FG=GD時,在棱AD上確定一點P,使得GP∥平面FMC.并給出證明.

          查看答案和解析>>

          同步練習冊答案