日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在直角坐標系xOy中,點P到兩點(0,-
          3
          ),(0,
          3
          )的距離之和等于4,設(shè)點P的軌跡為C,直線y=kx+1與C交于A,B兩點.
          (1)寫出C的方程;
          (2)若
          OA
          OB
          ,求k的值.
          分析:(1)由題中條件:“點P到兩點(0,-
          3
          ),(0,
          3
          )的距離之和等于4,”結(jié)合橢圓的定義知其軌跡式樣,從而求得其方程.
          (2)先將直線方程與橢圓方程聯(lián)立方程組,消去y得到一個一元二次方程,再利用根與系數(shù)的關(guān)系結(jié)合向量垂直的條件列關(guān)于k方程式即可求得參數(shù)k值.
          解答:解:(1)設(shè)P(x,y),由橢圓定義可知,點P的軌跡C是以(0,-
          3
          ),(0,
          3
          )為焦點,長半軸為2的橢圓,它的短半軸b=
          22-(
          3
          )2
          =1,故曲線C的方程為x2+
          y2
          4
          =1.
          (2)設(shè)A(x1,y1),B(x2,y2),其坐標滿足
          x2+
          y2
          4
          =1
          y=kx+1
          消去y并整理得
          (k2+4)x2+2kx-3=0,
          故x1+x2=-
          2k
          k2+4
          ,x1x2=-
          3
          k2+4

          OA
          OB

          ∴x1x2+y1y2=0.
          ∵y1y2=k2x1x2+k(x1+x2)+1,
          ∴x1x2+y1y2=-
          3
          k2+4
          -
          3k2
          k2+4
          -
          2k2
          k2+4
          +1=0,化簡得-4k2+1=0,所以k=±
          1
          2
          點評:本題考查“定義法”求曲線的軌跡方程、直線與圓錐曲線的綜合問題及方程思想,定義法:若動點軌跡的條件符合某一基本軌跡的定義(如橢圓、雙曲線、拋物線、圓等),可用定義直接探求.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在直角坐標系xOy中,橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左、右焦點分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點,點M為C1與C2在第一象限的交點,且|MF2|=
          5
          3

          (Ⅰ)求C1的方程;
          (Ⅱ)平面上的點N滿足
          MN
          =
          MF1
          +
          MF2
          ,直線l∥MN,且與C1交于A,B兩點,若
          OA
          OB
          =0
          ,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在直角坐標系xOy中,已知點P(2cosx+1,2cos2x+2)和點Q(cosx,-1),其中x∈[0,π].若向量
          OP
          OQ
          垂直,求x的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,在直角坐標系xOy中,射線OA在第一象限,且與x軸的正半軸成定角60°,動點P在射線OA上運動,動點Q在y軸的正半軸上運動,△POQ的面積為2
          3

          (1)求線段PQ中點M的軌跡C的方程;
          (2)R1,R2是曲線C上的動點,R1,R2到y(tǒng)軸的距離之和為1,設(shè)u為R1,R2到x軸的距離之積.問:是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個m的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在直角坐標系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
          x=tcosθ
          y=1+tsinθ
          (t
          為參數(shù))
          (I)求圓M的圓心的軌跡C的參數(shù)方程,并說明它表示什么曲線;
          (II)求直線l被軌跡C截得的最大弦長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在直角坐標系xOy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率e=
          2
          2
          ,左右兩個焦分別為F1,F(xiàn)2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.
          (1)求橢圓C的方程;
          (2)設(shè)橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關(guān)于直線l 的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案