日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】等比數(shù)列中,,公比,用表示它的前項之積:,則中最大的是( )

          A. B. C. D.

          【答案】C

          【解析】分析:由題意可得an=512,則|an|=512,|an|=1,得n=10,∴|Πn|最大值在n=10之時取到,因為n>10時,|an|<1,n越大,會使n|越小.所有n為偶數(shù)的an為負,故所有n為奇數(shù)的an為正,由此能求出最大的是Π9

          詳解:在等比數(shù)列{an}中,a1=512,公比q=﹣,∴an=512,則|an|=512

          |an|=1,得n=10,∴|Πn|最大值在n=10之時取到,因為n>10時,|an|<1,n越大,會使n|越小.

          ∴n為偶數(shù)時,an為負,n為奇數(shù)時,an為正.

          ∵Πn=a1a2…an,∴Πn 的最大值要么是a10,要么是a9

          ∵Π10 中有奇數(shù)個小于零的項,即a2,a4,a6,a8,a10,則Π10<0,

          Π9 中有偶數(shù)個項小于零,即a2,a4,a6,a8,故 Π9 最大,

          故答案為:C

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知等差數(shù)列和等比數(shù)列滿足 ,

          1的通項公式;

          2求和:

          【答案】1;(2

          【解析】試題分析:(1)根據(jù)等差數(shù)列, ,列出關于首項、公差的方程組,解方程組可得的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據(jù)題意列出關于首項 ,公比 的方程組,解得的值,求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.

          試題解析:(1)設等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.

          所以an=2n1.

          (2)設等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.

          解得q2=3.所以.

          從而.

          型】解答
          結(jié)束】
          18

          【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.

          (1)若,且為真,求實數(shù)的取值范圍;

          (2)若的充分不必要條件,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】”是“對任意的正數(shù), ”的( )

          A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件

          【答案】A

          【解析】分析:根據(jù)基本不等式,我們可以判斷出”?“對任意的正數(shù)x,2x+≥1”對任意的正數(shù)x2x+≥1”?“a=

          真假,進而根據(jù)充要條件的定義,即可得到結(jié)論.

          解答:解:當“a=時,由基本不等式可得:

          對任意的正數(shù)x2x+≥1”一定成立,

          “a=”?“對任意的正數(shù)x2x+≥1”為真命題;

          對任意的正數(shù)x,2x+≥1時,可得“a≥

          對任意的正數(shù)x2x+≥1”?“a=為假命題;

          “a=對任意的正數(shù)x,2x+≥1充分不必要條件

          故選A

          型】單選題
          結(jié)束】
          9

          【題目】如圖是一幾何體的平面展開圖,其中為正方形, 分別為, 的中點,在此幾何體中,給出下面四個結(jié)論:①直線與直線異面;②直線與直線異面;③直線平面;④平面平面

          其中一定正確的選項是( )

          A. ①③ B. ②③ C. ②③④ D. ①③④

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知等差數(shù)列和等比數(shù)列滿足 ,

          1的通項公式;

          2求和:

          【答案】1;(2

          【解析】試題分析:(1)根據(jù)等差數(shù)列 ,列出關于首項公差的方程組,解方程組可得的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據(jù)題意列出關于首項 ,公比 的方程組,解得、的值,求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.

          試題解析:(1)設等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.

          所以an=2n1.

          (2)設等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.

          解得q2=3.所以.

          從而.

          型】解答
          結(jié)束】
          18

          【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.

          (1)若,且為真,求實數(shù)的取值范圍;

          (2)若的充分不必要條件,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面, , , 分別為, 的中點,點在線段上.

          (1)求證: 平面;

          (2)若直線與平面所成的角和直線與平面所成的角相等,求的值.

          【答案】(1)證明見解析;(2) .

          【解析】試題分析:

          在平行四邊形中,由條件可得,進而可得。由側(cè)面底面,得底面,故得,所以可證得平面.(Ⅱ)先證明平面平面,由面面平行的性質(zhì)可得平面.(Ⅲ)建立空間直角坐標系,通過求出平面的法向量,根據(jù)線面角的向量公式可得。

          試題解析:

          (Ⅰ)證明:在平行四邊形中,

          , ,

          ,

          分別為, 的中點,

          ,

          ,

          ∵側(cè)面底面,且,

          底面

          底面,

          , 平面 平面,

          平面

          (Ⅱ)證明:∵的中點, 的中點,

          ,

          平面, 平面,

          平面,

          同理平面,

          , 平面 平面,

          ∴平面平面,

          平面,

          平面

          (Ⅲ)解:由底面, ,可得, , 兩兩垂直,

          建立如圖空間直角坐標系,

          , , , ,

          所以 , ,

          ,則,

          , ,

          易得平面的法向量,

          設平面的法向量為,則:

          ,得

          ,得

          ∵直線與平面所成的角和此直線與平面所成的角相等,

          ,即

          ,

          解得(舍去),

          點睛用向量法確定空間中點的位置的方法

          根據(jù)題意建立適當?shù)目臻g直角坐標系,由條件確定有關點的坐標,運用共線向量用參數(shù)(參數(shù)的范圍要事先確定確定出未知點的坐標,根據(jù)向量的運算得到平面的法向量或直線的方向向量,根據(jù)所給的線面角(或二面角)的大小進行運算,進而求得參數(shù)的值,通過與事先確定的參數(shù)的范圍進行比較,來判斷參數(shù)的值是否符合題意,進而得出點是否存在的結(jié)論。

          型】解答
          結(jié)束】
          21

          【題目】如圖,橢圓上的點到左焦點的距離最大值是,已知點在橢圓上,其中為橢圓的離心率.

          (1)求橢圓的方程;

          (2)過原點且斜率為的直線交橢圓于、兩點,其中在第一象限,它在軸上的射影為點,直線交橢圓于另一點.證明:對任意的,點恒在以線段為直徑的圓內(nèi).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知,動點滿足,且,則方向上的投影的取值范圍是__________

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱錐中,側(cè)棱底面,底面為長方形,且,的中點,作于點.

          (1)證明:平面;

          (2)若三棱錐的體積為,求二面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某校高三年級實驗班與普通班共1000名學生,其中實驗班學生200人,普通班學生800人,現(xiàn)將高三一模考試數(shù)學成績制成如圖所示頻數(shù)分布直方圖,按成績依次分為5組,其中第一組([0, 30)),第二組([30, 60)),第三組([60, 90)),的頻數(shù)成等比數(shù)列,第一組與第五組([120, 150))的頻數(shù)相等,第二組與第四組([90, 120))的頻數(shù)相等。

          (1)求第三組的頻率;

          (2)已知實驗班學生成績在第五組,在第四組,剩下的都在第三組,試估計實驗班學生數(shù)學成績的平均分;

          (3)在(2)的條件下,按分層抽樣的方法從第5組中抽取5人進行經(jīng)驗交流,再從這5人中隨機抽取3人在全校師生大會上作經(jīng)驗報告,求抽取的3人中恰有一個普通班學生的概率。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知方程

          )若已知方程表示橢圓,則的取值范圍為__________

          )語句是語句方程表示雙曲線的_____________

          A.充分不必要條件 B.必要不充分條件 C.充在條件 D.既不充分也不必要條件

          )根據(jù)()的結(jié)論,以如果那么的形式寫出一個正確命題,記作命題,則

          命題__________

          )套用量詞命題的格式:, , ,改寫()中命題,

          表述形式為:__________

          )寫出()中命題的逆命題,記作命題,則

          命題__________

          )判斷()中命題真假,并陳述判斷理由.

          命題為__________命題,因為__________

          )若已知方程表示橢圓,則該橢圓兩個焦點的坐標分別為__________

          查看答案和解析>>

          同步練習冊答案