【題目】如圖,三棱柱的所有棱長(zhǎng)均為2,底面
側(cè)面
,
,
為
的中點(diǎn),
.
(1)證明: .
(2)若是
棱上一點(diǎn),滿(mǎn)足
,求二面角
的余弦值.
【答案】(1)見(jiàn)解析;(2)
【解析】試題分析:(1))取的中點(diǎn)
,連接
,易證
為平行四邊形,從而
.由底面
側(cè)面
,可得
側(cè)面
,即
,又側(cè)面
為菱形,所以
,從而
平面
,可證得AB1⊥A1P.
(2)以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系
.利用向量法求解.
試題解析;(1)取的中點(diǎn)
,連接
,易證
為平行四邊形,從而
.由底面
側(cè)面
,底面
側(cè)面
,
,
底面
,所以
側(cè)面
,即
側(cè)面
,又
側(cè)面
,所以
,又側(cè)面
為菱形,所以
,從而
平面
,因?yàn)?/span>
平面
,所以
.
(2)由(1)知, ,
,
,以
為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系
.
因?yàn)閭?cè)面是邊長(zhǎng)為2的菱形,且
,所以
,
,
,
,
,
,得
.設(shè)
,得
,所以
,所以
.而
.所以
,解得
.所以
,
,
.設(shè)平面
的法向量
,由
得
,取
.而側(cè)面
的一個(gè)法向量
.設(shè)二面角
的大小為
.則
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校在年的自主招生考試成績(jī)中隨機(jī)抽取
名學(xué)生的筆試成績(jī),按成績(jī)分組:第
組
,第
組
,第
組
,第
組
,第
組
得到的頻率分布直方圖如圖所示
分別求第
組的頻率;
若該校決定在第
組中用分層抽樣的方法抽取
名學(xué)生進(jìn)入第二輪面試,
已知學(xué)生甲和學(xué)生乙的成績(jī)均在第
組,求學(xué)生甲和學(xué)生乙同時(shí)進(jìn)入第二輪面試的概率;
根據(jù)直方圖試估計(jì)這
名學(xué)生成績(jī)的平均分.(同一組中的數(shù)據(jù)用改組區(qū)間的中間值代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
的導(dǎo)函數(shù)為
.
(1)試討論函數(shù)的零點(diǎn)個(gè)數(shù);
(2)若對(duì)任意的,關(guān)于
的不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 山東省《體育高考方案》于2012年2月份公布,方案要求以學(xué)校為單位進(jìn)行體育測(cè)試,某校對(duì)高三1班同學(xué)按照高考測(cè)試項(xiàng)目按百分制進(jìn)行了預(yù)備測(cè)試,并對(duì)50分以上的成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,若90~100分?jǐn)?shù)段的人數(shù)為2人.
(Ⅰ)請(qǐng)估計(jì)一下這組數(shù)據(jù)的平均數(shù)M;
(Ⅱ)現(xiàn)根據(jù)初賽成績(jī)從第一組和第五組(從低分段到高分段依次為第一組、第二組、…、第五組)中任意選出兩人,形成一個(gè)小組.若選出的兩人成績(jī)差大于20,則稱(chēng)這兩人為“幫扶組”,試求選出的兩人為“幫扶組”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中,
,
,
,
是
的中點(diǎn),將
沿
折起得到圖(二),點(diǎn)
為棱
上的動(dòng)點(diǎn).
(1)求證:平面平面
;
(2)若,二面角
為
,點(diǎn)
為
中點(diǎn),求二面角
余弦值的平方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)試討論函數(shù)的單調(diào)性;
(2)若,證明:方程
有且僅有3個(gè)不同的實(shí)數(shù)根.(附:
,
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 山東省《體育高考方案》于2012年2月份公布,方案要求以學(xué)校為單位進(jìn)行體育測(cè)試,某校對(duì)高三1班同學(xué)按照高考測(cè)試項(xiàng)目按百分制進(jìn)行了預(yù)備測(cè)試,并對(duì)50分以上的成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,若90~100分?jǐn)?shù)段的人數(shù)為2人.
(Ⅰ)請(qǐng)估計(jì)一下這組數(shù)據(jù)的平均數(shù)M;
(Ⅱ)現(xiàn)根據(jù)初賽成績(jī)從第一組和第五組(從低分段到高分段依次為第一組、第二組、…、第五組)中任意選出兩人,形成一個(gè)小組.若選出的兩人成績(jī)差大于20,則稱(chēng)這兩人為“幫扶組”,試求選出的兩人為“幫扶組”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解人們對(duì)“延遲退休年齡政策”的態(tài)度,某部門(mén)從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的頻率分布直方圖,在這100人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如表所示:
(1)由頻率分布直方圖,估計(jì)這100人年齡的平均數(shù);
(2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的22列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過(guò)5%的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的態(tài)度存在差異?
45歲以下 | 45歲以上 | 總計(jì) | |
不支持 | |||
支持 | |||
總計(jì) |
參考數(shù)據(jù):
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費(fèi)者對(duì)手機(jī)流量的需求越來(lái)越大.長(zhǎng)沙某通信公司為了更好地滿(mǎn)足消費(fèi)者對(duì)流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了5個(gè)城市(總?cè)藬?shù)、經(jīng)濟(jì)發(fā)展情況、消費(fèi)能力等方面比較接近)采用不同的定價(jià)方案作為試點(diǎn),經(jīng)過(guò)一個(gè)月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價(jià):(單位:元/月)和購(gòu)買(mǎi)人數(shù)
(單位:萬(wàn)人)的關(guān)系如表:
(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說(shuō)明,是否可以用線(xiàn)性回歸模型擬合與
的關(guān)系?并指出是正相關(guān)還是負(fù)相關(guān);
(2)①求出關(guān)于
的回歸方程;
②若該通信公司在一個(gè)類(lèi)似于試點(diǎn)的城市中將這款流量包的價(jià)格定位25元/ 月,請(qǐng)用所求回歸方程預(yù)測(cè)長(zhǎng)沙市一個(gè)月內(nèi)購(gòu)買(mǎi)該流量包的人數(shù)能否超過(guò)20 萬(wàn)人.
參考數(shù)據(jù):,
,
.
參考公式:相關(guān)系數(shù),回歸直線(xiàn)方程
,
其中,
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com