日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示:m個實a1a2…,am(m≥3且m∈N)依次按順時針方向圍成一個圓圈.
          (1)已知a1=1且an+1=an+數(shù)學(xué)公式(n∈N,n<m),若am>1.99恒成立,求m的最小值;
          (2)設(shè)圓圈上按順時針方向任意相鄰的三個數(shù)ap、aq、ar均滿足:aq=λap+ar(λ>0),求證:a1=a2=…=am

          解:(1)∵a1=1且an+1=an+(n∈N,n<m),

          =1+1-+-+…+=2-,
          ∵an>1.99(m∈N+),
          ,∴m>100,
          于是,m的最小值為101.
          (2)∵aq=λap+(1-λ)ar(λ>0),
          ∴λ(ap-aq)=(1-λ)(ar-aq),
          當(dāng)λ=1時,a1=a2=…=am成立.
          當(dāng)λ≠1時,,
          則數(shù)列{an-an-1}(2≤n≤m)是等比數(shù)列,于是:
          am-am-1=(a2-a1)(m-2,又,
          ,
          ,
          所以,或a2-a1=0.
          若a2-a1=0,則a1=a2=…=am
          ,則,
          此時數(shù)列{an}(1≤n≤m)為等差數(shù)列,設(shè)公差為d,
          則am=a1+(m-1)d,am-1=a1+(m-2)d,
          ,∴d=0,
          ∴a1=a2=…=am
          綜上所述:a1=a2=…=am
          分析:(1)由a1=1且an+1=an+(n∈N,n<m),推導(dǎo)出am=2-,由此能求出m的最小值.
          (2)由aq=λap+(1-λ)ar(λ>0),得λ(ap-aq)=(1-λ)(ar-aq),當(dāng)λ=1時,a1=a2=…=am成立.當(dāng)λ≠1時,,由此利用分類討論思想能夠證明a1=a2=…=am
          點評:本題考查數(shù)列與不等式的綜合應(yīng)用,考查推理誰能力和計算應(yīng)用能力,綜合性強,難度大,是高考的重點.解題時要認真審題,仔細解答,注意挖掘題設(shè)中的隱含條件,合理地進行等價轉(zhuǎn)化.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示:m個實a1a2…,am(m≥3且m∈N)依次按順時針方向圍成一個圓圈.
          (1)已知a1=1且an+1=an+
          1m(n+1)
          (n∈N,n<m),若am>1.99恒成立,求m的最小值;
          (2)設(shè)圓圈上按順時針方向任意相鄰的三個數(shù)ap、aq、ar均滿足:aq=λap+ar(λ>0),求證:a1=a2=…=am

          查看答案和解析>>

          同步練習(xí)冊答案