如圖,已知拋物線:
和⊙
:
,過拋物線
上一點(diǎn)
作兩條直線與⊙
相切于
、
兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)
到拋物線準(zhǔn)線的距離為
.
(1)求拋物線的方程;
(2)當(dāng)的角平分線垂直
軸時(shí),求直線
的斜率;
(3)若直線在
軸上的截距為
,求
的最小值.
(1);(2)
;(3)
﹒
解析試題分析:(1)由題意知圓心的坐標(biāo)為
,半徑為1,拋物線
的準(zhǔn)線方程為
,因?yàn)閳A心
到拋物線準(zhǔn)線的距離為
,所以有
,解得
,從而求出拋物線方程為
.
(2)由題意可知,直線軸,可求出點(diǎn)
的坐標(biāo)為
,此時(shí)直線
與
的傾斜角互補(bǔ),即
,又設(shè)點(diǎn)
、
的坐標(biāo)分別為
、
,則
,
,所以有
,即
,整理得
,所以
.
(3)由題意可設(shè)點(diǎn)、
的坐標(biāo)分別為
、
,則
,
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1c/2/utzu62.png" style="vertical-align:middle;" />、
是圓
的切線,所以
、
,因此
,
,由點(diǎn)斜式可求出直線
、
的直線方程分別為
、
,又點(diǎn)
在拋物線上,有
,所以點(diǎn)
的坐標(biāo)為
,代入直線
、
的方程得
、
,可整理為
、
,從而可求得直線
的方程為
,令
,得直線
在
上的截距為
,考慮到函數(shù)
為單調(diào)遞增函數(shù),所以
.
試題解析:(1)∵點(diǎn)到拋物線準(zhǔn)線的距離為
,
∴,即拋物線
的方程為
. 2分
(2)法一:∵當(dāng)的角平分線垂直
軸時(shí),點(diǎn)
,∴
,
設(shè),
,
∴, ∴
,
∴.&nbs
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,直線
與圓
相切.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓
的交點(diǎn)為
,求弦長(zhǎng)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的兩個(gè)焦點(diǎn)是(0,-)和(0,
),并且經(jīng)過點(diǎn)
,拋物線E的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F恰好是橢圓C的右頂點(diǎn).
(Ⅰ)求橢圓C和拋物線E的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點(diǎn)A、B,l2交拋物線E于點(diǎn)G、H,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
,曲線
、
相交于
、
兩點(diǎn).(
)
(Ⅰ)求、
兩點(diǎn)的極坐標(biāo);
(Ⅱ)曲線與直線
(
為參數(shù))分別相交于
兩點(diǎn),求線段
的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓兩焦點(diǎn)坐標(biāo)分別為
,
,且經(jīng)過點(diǎn)
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn),直線
與橢圓
交于兩點(diǎn)
.若△
是以
為直角頂點(diǎn)的等腰直角三角形,試求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左、右焦點(diǎn)分別為
,且
,長(zhǎng)軸的一個(gè)端點(diǎn)與短軸兩個(gè)端點(diǎn)組成等邊三角形的三個(gè)頂點(diǎn).
(1)求橢圓方程;
(2)設(shè)橢圓與直線相交于不同的兩點(diǎn)M、N,又點(diǎn)
,當(dāng)
時(shí),求實(shí)數(shù)m的取值范圍,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)F(-c,0)是橢圓的左焦點(diǎn),直線l:x=-
與x軸交于P點(diǎn),MN為橢圓的長(zhǎng)軸,已知|MN|=8,且|PM|=2|MF|。
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)P的直線m與橢圓相交于不同的兩點(diǎn)A,B。
①證明:∠AFM=∠BFN;
②求△ABF面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知的兩頂點(diǎn)坐標(biāo)
,
,圓
是
的內(nèi)切圓,在邊
,
,
上的切點(diǎn)分別為
,
(從圓外一點(diǎn)到圓的兩條切線段長(zhǎng)相等),動(dòng)點(diǎn)
的軌跡為曲線
.
(1)求曲線的方程;
(2)設(shè)直線與曲線
的另一交點(diǎn)為
,當(dāng)點(diǎn)
在以線段
為直徑的圓上時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=|PD|,當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com