日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在海岸線一側C處有一個美麗的小島,某旅游公司為方便游客,在上設立了A、B兩個報名點,滿足A、B、C中任意兩點間的距離為10千米。公司擬按以下思路運作:先將A、B兩處游客分別乘車集中到AB之間的中轉點D處(點D異于A、B兩點),然后乘同一艘游輪前往C島。據(jù)統(tǒng)計,每批游客A處需發(fā)車2輛,B處需發(fā)車4輛,每輛汽車每千米耗費2元,游輪每千米耗費12元。設∠,每批游客從各自報名點到C島所需運輸成本S元。

          ⑴寫出S關于的函數(shù)表達式,并指出的取值范圍;

          ⑵問中轉點D距離A處多遠時,S最小?

           

          【答案】

          (1);(2)千米.

          【解析】

          試題分析:(1)首先發(fā)現(xiàn)運輸成本與路程有關,根據(jù)題意總運輸成本為,下面就是想辦法把表示出來,由于,因此在中,利用正弦定理就可以用表示出,而,因此表達式易求.(2)由(1)求出了的函數(shù),問題變?yōu)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032305021757814095/SYS201403230502429843173392_DA.files/image006.png">為何值時,函數(shù)取得最小值,可以用導數(shù)的知識加以解決,即求出,令,使值一定函數(shù)的最值點,只是我們要考慮下是最大還是最小值而已,這個應該是很好解決的.

          試題解析:(1)由題在中,,

          由正弦定理得,得

          ,        3分

                  7分

          (2),令,得,        10分

          時,,當時,,∴當時,取得最小值.    12分

          此時,,

          ∴中轉站距千米時,運輸成本最。        14分

          考點:(1)正弦定理;(2)函數(shù)的最小值.

           

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (2013•鹽城二模)如圖,在海岸線l一側C處有一個美麗的小島,某旅游公司為方便游客,在l上設立了A、B兩個報名點,滿足A、B、C中任意兩點間的距離為10千米.公司擬按以下思路運作:先將A、B兩處游客分別乘車集中到AB之間的中轉點D處(點D異于A、B兩點),然后乘同一艘游輪前往C島.據(jù)統(tǒng)計,每批游客A處需發(fā)車2輛,B處需發(fā)車4輛,每輛汽車每千米耗費2元,游輪每千米耗費12元.設∠CDA=α,每批游客從各自報名點到C島所需運輸成本S元.
          (1)寫出S關于α的函數(shù)表達式,并指出α的取值范圍;
          (2)問中轉點D距離A處多遠時,S最。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,在海岸線l一側C處有一個美麗的小島,某旅游公司為方便游客,在l上設立了A、B兩個報名點,滿足A、B、C中任意兩點間的距離為10千米.公司擬按以下思路運作:先將A、B兩處游客分別乘車集中到AB之間的中轉點D處(點D異于A、B兩點),然后乘同一艘游輪前往C島.據(jù)統(tǒng)計,每批游客A處需發(fā)車2輛,B處需發(fā)車4輛,每輛汽車每千米耗費2元,游輪每千米耗費12元.設∠CDA=α,每批游客從各自報名點到C島所需運輸成本S元.
          (1)寫出S關于α的函數(shù)表達式,并指出α的取值范圍;
          (2)問中轉點D距離A處多遠時,S最。

          查看答案和解析>>

          科目:高中數(shù)學 來源:2013年江蘇省鹽城市高考數(shù)學二模試卷(解析版) 題型:解答題

          如圖,在海岸線l一側C處有一個美麗的小島,某旅游公司為方便游客,在l上設立了A、B兩個報名點,滿足A、B、C中任意兩點間的距離為10千米.公司擬按以下思路運作:先將A、B兩處游客分別乘車集中到AB之間的中轉點D處(點D異于A、B兩點),然后乘同一艘游輪前往C島.據(jù)統(tǒng)計,每批游客A處需發(fā)車2輛,B處需發(fā)車4輛,每輛汽車每千米耗費2元,游輪每千米耗費12元.設∠CDA=α,每批游客從各自報名點到C島所需運輸成本S元.
          (1)寫出S關于α的函數(shù)表達式,并指出α的取值范圍;
          (2)問中轉點D距離A處多遠時,S最?

          查看答案和解析>>

          同步練習冊答案